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Data, Data, Data

≥ 100,000+ microbial and > 3,000 animal genomes sequenced.

Computational identification of genes in sequenced genomes.

Massive datasets measuring levels and activities of molecules.

Molecular interaction networks, metabolic pathways.
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Roadblock: What Functions Do Genes Perform?

“During the last few years, we have seen enormous strides in our abilities
to sequence genomes, . . .With more than 150 complete genome sequences
now available and many laboratories rushing into microarray analysis,
proteomic initiatives, and even systems biology, it seems an appropriate
time to consider not just the opportunities those sequences present, but
also their shortcomings. By far the most serious problem is the quality and
degree of completeness of the annotation of those genomes.” (Identifying
Protein Function—A Call for Community Action. Roberts RJ (2004),
PLoS Biol 2(3): e42.)

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

UniProt Annotation Coverage

Tiny fraction of genes have an experimentally validated function
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Solution: Automated Gene Function Prediction

Develop computational techniques that automatically integrate
diverse source of data to predict function.

Provide measures of confidence and statistical significance for each
prediction.

Present the predictions in a user-friendly manner to a biologist for
designing experiments to validate prediction.
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How do you Predict Function?

Genes with similar sequences in different organisms are likely to have
the same function.

Use algorithms for computing sequence and structural similarity.

Transfer the known function of a well-studied gene to a gene with a
similar sequence that has no known functions.

BUT

25% of the genes have no known sequence or structural similarity to
any gene in any other organism.

An additional 50% have poor annotations.

We need techniques for gene function prediction that go
beyond sequence similarity.
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What is Gene Function?

Not an easy question to answer!

A gene’s function has many aspects.

Different aspects are interesting to different biologists.

There are many ways to describe a gene’s function.

Different groups of biologists have derived different vocabularies.
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The Gene Ontology (GO)

Collaborative effort to define a controlled vocabulary to describe gene
and gene product attributes in any organism. Started in 1999.

Visit http://www.geneontology.org
Three GO aspects (namespaces): A gene product has

▶ a molecular function: an activity, such as catalyzing or binding, carried
out by the gene product at the molecular level;

▶ is used in a biological process: a series of events accomplished by one
or more ordered assemblies of molecular functions; and

▶ might be associated with a cellular component: a component of a cell
that is part of some larger object, which may be an anatomical
structure or a gene product group.

For example, the gene product Angiotensin-converting enzyme 2
(ACE2) has

▶ the molecular function term virus receptor activity,
▶ the biological process terms regulation of cytokine production and viral

life cycle, and
▶ the cellular component term extracellular region and plasma membrane.

Jump to FLNs

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Features of GO: Hierarchy

A team of experts defines GO terms.

GO terms are described at multiple levels of detail.

Explicit parent-child relationships between terms, forming a directed
acyclic graph (DAG).

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Features of GO: Evidence Codes

Annotations typically done by individual genome databases.

Evidence code attached to annotation in six categories:
http://geneontology.org/docs/guide-go-evidence-codes/

▶ experimental evidence
▶ phylogenetic evidence
▶ computational evidence
▶ author and curatorial statements
▶ automatically generated annotations
▶ not determined

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Advantages of GO

The vocabulary is controlled ⇒ common vocabulary for all biologists.

Designed to apply across species.

Computed mappings from other functional catalgues to GO.

The GO terms are constantly updated (actually a headache for gene
function prediction algorithms).

Freely available to the community.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Moving Beyond GO

GO does not describe many aspects of a gene’s function:

which cells
or tissues it is expressed in, which developmental stages it is expressed
in, or its involvement in disease.

Other ontologies are being developed to meet these needs.
▶ Open Biomedical Ontologies: http://obo.sourceforge.net/
▶ Ontology Working Group of the Microarray Gene Expression Data

Society (MGED):
http://mged.sourceforge.net/ontologies/OntologyResources.php

“Cross-products” of different ontologies: combine different
(independent) ontologies to derive richer vocabularies.

“For example, by combining the developmental terms in the GO process
ontology with a second ontology that describes Drosophila anatomical
structures, we could create an ontology of fly development.”

“We could create an ontology of biosynthetic pathways by combining the
biosynthesis terms in the GO process ontology with a chemical ontology.”

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Moving Beyond GO

GO does not describe many aspects of a gene’s function: which cells
or tissues it is expressed in, which developmental stages it is expressed
in, or its involvement in disease.

Other ontologies are being developed to meet these needs.
▶ Open Biomedical Ontologies: http://obo.sourceforge.net/
▶ Ontology Working Group of the Microarray Gene Expression Data

Society (MGED):
http://mged.sourceforge.net/ontologies/OntologyResources.php

“Cross-products” of different ontologies: combine different
(independent) ontologies to derive richer vocabularies.

“For example, by combining the developmental terms in the GO process
ontology with a second ontology that describes Drosophila anatomical
structures, we could create an ontology of fly development.”

“We could create an ontology of biosynthetic pathways by combining the
biosynthesis terms in the GO process ontology with a chemical ontology.”

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Moving Beyond GO

GO does not describe many aspects of a gene’s function: which cells
or tissues it is expressed in, which developmental stages it is expressed
in, or its involvement in disease.

Other ontologies are being developed to meet these needs.
▶ Open Biomedical Ontologies: http://obo.sourceforge.net/
▶ Ontology Working Group of the Microarray Gene Expression Data

Society (MGED):
http://mged.sourceforge.net/ontologies/OntologyResources.php

“Cross-products” of different ontologies: combine different
(independent) ontologies to derive richer vocabularies.

“For example, by combining the developmental terms in the GO process
ontology with a second ontology that describes Drosophila anatomical
structures, we could create an ontology of fly development.”

“We could create an ontology of biosynthetic pathways by combining the
biosynthesis terms in the GO process ontology with a chemical ontology.”

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Moving Beyond GO

GO does not describe many aspects of a gene’s function: which cells
or tissues it is expressed in, which developmental stages it is expressed
in, or its involvement in disease.

Other ontologies are being developed to meet these needs.
▶ Open Biomedical Ontologies: http://obo.sourceforge.net/
▶ Ontology Working Group of the Microarray Gene Expression Data

Society (MGED):
http://mged.sourceforge.net/ontologies/OntologyResources.php

“Cross-products” of different ontologies: combine different
(independent) ontologies to derive richer vocabularies.

“For example, by combining the developmental terms in the GO process
ontology with a second ontology that describes Drosophila anatomical
structures, we could create an ontology of fly development.”

“We could create an ontology of biosynthetic pathways by combining the
biosynthesis terms in the GO process ontology with a chemical ontology.”

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Moving Beyond GO

GO does not describe many aspects of a gene’s function: which cells
or tissues it is expressed in, which developmental stages it is expressed
in, or its involvement in disease.

Other ontologies are being developed to meet these needs.
▶ Open Biomedical Ontologies: http://obo.sourceforge.net/
▶ Ontology Working Group of the Microarray Gene Expression Data

Society (MGED):
http://mged.sourceforge.net/ontologies/OntologyResources.php

“Cross-products” of different ontologies: combine different
(independent) ontologies to derive richer vocabularies.

“For example, by combining the developmental terms in the GO process
ontology with a second ontology that describes Drosophila anatomical
structures, we could create an ontology of fly development.”

“We could create an ontology of biosynthetic pathways by combining the
biosynthesis terms in the GO process ontology with a chemical ontology.”

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Functional Linkage Networks
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A functional linkage network (FLN) is a graph where each node
corresponds to a gene and each edge connects two genes that may
share a similar function.

An edge may not indicate which function the connected genes share.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Constructing FLNs

Organism specific: Example from STRING

▶ Co-expression from DNA microarray data.
▶ Protein products interact.
▶ Enzymes that catalyse different reactions in the same metabolic

pathway.
▶ Genes co-regulated by the same transcription factor.
▶ Double mutants are lethal (synthetic lethality).

Cross-organism: Information on co-evolution encoded in genomic
context.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Constructing FLNs

Organism specific: Example from STRING
▶ Co-expression from DNA microarray data.
▶ Protein products interact.
▶ Enzymes that catalyse different reactions in the same metabolic

pathway.
▶ Genes co-regulated by the same transcription factor.
▶ Double mutants are lethal (synthetic lethality).

Cross-organism: Information on co-evolution encoded in genomic
context.

Onward to Challenges
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Cross-Organism Functional Associations
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Research on Functional Links

Databases: BIND, DIP, GRID, IDSERVE, PROLINKS,
PREDICTOME, REACTOME, STRING, . . . .

Techniques for predicting functional associations, e.g., protein-protein
interactions (Jansen et al., Science, 302, 2003; Zhang et al., BMC
Bioinformatics, 5, 2005; Park et al., PLoS Comp. Bio., Nov 2010),
Kovács et al., Nature Comm., 2019.

Techniques for integrating diverse pieces of evidence into a single
integrated FLN (Lee et al., Science, 306, 2005; papers by
Troyanskaya’s group; Mostafavi et al., Genome Biology, 2008).

How do we systematically use FLNs to make robust and quantified
predictions of function?

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Why is Gene Function Prediction Difficult?
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Functional associations are not perfect indicators of shared function.

20–30% of genes of unknown function have only such genes as
neighbours.

Neighbourhood structure is ambiguous.
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The GAIN System
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Gene Annotation Using Integrated Networks (GAIN):

Propagate evidence systematically across the entire FLN.

Integrate information from different sources to improve robustness.

:
protein-protein interactions and gene expression data.

(Karaoz, Murali, Letovsky, Zheng, Ding, Cantor and Kasif, PNAS, 2004,
101, 2888–2893.)
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Overview of the GAIN Pipeline

Inputs: Functional genomic data sets, GO functional annotations.

Outputs: For each function in GO, a set of genes predicted to have
that function.

1 Construct FLN G from functional genomic data sets.
2 For each function f in GO

1 Construct a labelled FLN Gf for f .
2 Propagate the label f or notf across Gf .
3 Output set of genes that have been assigned the function f .

Can predict multiple functions for a gene.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Labelled FLNs

Labelled FLN Gf for a function f ≡ the FLN G with states (labels)
attached to nodes.

FLN → discrete Hopfield network.
▶ Gene ≡ node.
▶ Interaction ≡ edge.

RLP7
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BUD20

SDA1

NOC2

NOP2

ERB1 NUG1

NOP7

Each node v has an associated
state sv :

▶ sv = 1: gene v is annotated
with f .

▶ sv = −1: gene v is annotated
with another function f ′.

▶ sv = 0: otherwise.

An edge between nodes u and v
has a weight wuv .

Skip Node States

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction
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Assigning Node States

Assigning node states correctly is not a trivial manner.

We must respect/exploit GO’s hierarchical structure .

What is state of gene p
with respect to function

▶ f :

1

▶ g :

1

▶ h:

1

▶ m:

-1

▶ k:

0

▶ l :

-1 or 0? Correct
state is 0.
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Goal: Maximally-Consistent Assignments

RLP7

NSA1
TIF6

NOP15

BRX1

SSF1

HAS1

BUD20

SDA1

NOC2

NOP2

ERB1 NUG1

NOP7

An edge is consistent if it is
incident on nodes with the same
state.

Maximally-consistent assignment:
number of consistent edges is
maximised.

Computational goal: Assign state of −1 or +1 to nodes with initial state 0
to achieve maximal consistency by minimising

E =
∑

(u,v) is an edge

−wuv susv

Predict nodes in state 1 as being annotated with the function.
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Minimising E

Finding state assignments to all nodes with initial su = 0 to minimise
E is NP-complete if some edge weights are negative.

Vasquez et al., Nature Biotech. 2003 use a simulated annealing-based
approach.

Our approach is based on the idea of local updates: each node looks
at its neighbours and decides what its state should be.

Both approaches are well-known and well-studied.

Can use minimum cuts and integer programming (Nabieva et al.,
Proc. ISMB 2005; Murali, Wu, and Kasif, Nature Biotech., 2006).
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Local Update Rule

Activation rule is

su = sgn

( ∑
v∈Nu

wuv sv

)
,

where Nv = neighbours of node u.

Applying this rule:

▶ Parallel update: each node updates itself in parallel with the other
nodes.

▶ Serial update: go through each node in sequence.

Stopping criterion: converge when no node’s state changes.
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Why does the Local Update Algorithm Converge?

Every time a node x ’s state changes, E

decreases.
Let E o and En be the old and values of energy, respectively.
Let sox and snx be the old and new states of x , respectively.

E n − E o =
∑
(u,v)

−wuv s
o
u s

o
v −

∑
(u,v)

−wuv s
n
u s

n
v

=
∑
u∈Nx

−wux(s
o
u s

o
x − snu s

n
x )

=
∑
u∈Nx

−wuxs
o
u (s

o
x − snx )

= −(sox − snx )
∑
u∈Nx

wuxs
o
u

sgn(E n − E o) = sgn(snx − sox )sgn

( ∑
u∈Nx

wuxs
o
u

)
= sgn(snx − sox )s

n
x = 1

What are the maximum and minimum values of E?
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Example of Local Updates

RLP7

NSA1
TIF6

NOP15

BRX1

SSF1

HAS1

BUD20

SDA1

NOC2

NOP2

ERB1 NUG1

NOP7
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Data Sets

Interactions: General Repository of Interaction Datasets (GRID).

Microarray: Functional discovery via a compendium of expression
profiles. Hughes TR et al. Cell. 2000 102: 109–26.

Functional Annotations: Gene Ontology, three categories are
biological process, molecular function, and cellular component.
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Cleaning Up PPI Network

GRID data set has 4711 genes and 13607 interactions.

GRID data set has information on publications.
ORF A ORF B EXPERIMENTAL SYSTEM SOURCE PUBMED ID

YER006W YPL211W Affinity Precipitation Bassler et al. ;11583615;

YDL140C YBR154C Two Hybrid BIND ;2496296;9207794;10393904;

We only consider interactions reported by at least two different
experiments to obtain 997 interactions between 1004 genes.
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Data Integration

Unweighted: wuv = 1.

Integrated: wuv is the absolute value of correlation coefficient of the
expression profiles of gene u and gene v in the “Compendium” data
set.
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Leave One-Out Cross Validation

For each function f ,
1 for each gene u annotated with f , set initial value of su = 0 and

compute state assigned to u by the Hopfield network.
2 Perform a similar operation for each gene not annotated with f .

Measurement of performance:

▶ True positive: su : 1 → 0 → 1

▶ False positive: su : −1 → 0 → 1

▶ True negative: su : −1 → 0 → −1

▶ False negative: su : 1 → 0 → −1

▶ Precision = TP/(TP + FP)

▶ Sensitivity = Recall = TP/(TP +
FN)

▶ F-measure = Harmonic mean of
precision and recall.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

Leave One-Out Cross Validation

For each function f ,
1 for each gene u annotated with f , set initial value of su = 0 and

compute state assigned to u by the Hopfield network.
2 Perform a similar operation for each gene not annotated with f .

Measurement of performance:

▶ True positive: su : 1 → 0 → 1

▶ False positive: su : −1 → 0 → 1

▶ True negative: su : −1 → 0 → −1

▶ False negative: su : 1 → 0 → −1

▶ Precision = TP/(TP + FP)

▶ Sensitivity = Recall = TP/(TP +
FN)

▶ F-measure = Harmonic mean of
precision and recall.

T. M. Murali October 13, 18, 2022 CS 3824: Gene Function Prediction



Introduction GO FLNs GAIN Results Other Algorithms

k-fold cross validation

1 Partition union of positive and negative examples into k groups,
uniformly at random.

2 For each group, use algorithm to predict the state of each
positive/negative example in that group using all other examples.

3 Sort all positive and negative examples in decreasing order of
prediction confidence.

4 For each threshold on prediction confidence, compute the number of
true positives (tp), false positives (fp), true negatives (tn), and false
negatives (fn).

5 For each threshold on prediction confidence, compute precision
(tp/(tp + fp)), recall (tp/(tp + fn)), and false positive rate
(fp/(fp + tn)).

6 As prediction confidence varies, plot precision against recall.
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Results for Both Variants

1 Overall comparison of cross-validation.

2 Specific examples of genes that perform better on cross-validation
(see paper).

3 Novel functional annotations.
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Overall Cross-Validation Results
Restricted to 828 functions for which F-score > 0.
Unweighted network: Precision = 94%, Recall = 64%.
Integrated network: Among 440 functions for which we make at least
one novel prediction,

▶ 168 function had better F-measures, 227 the same, and 45 smaller
F-measures in the integrated network.
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Novel Functional Annotations

RLP7

NSA1
TIF6

NOP15

BRX1

SSF1

HAS1

BUD20

SDA1

NOP7

NOC2

NOP2

ERB1 NUG1

ERB1, HAS1, and NUG1: validated to have the function “rRNA
processing.”

NOC2: validated to have the function “ribosome assembly and
ribosome-nuclear export.”
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Novel Functional Annotations

NHP10
▶ biological process chromatin modeling and cellular component

chromatin remodeling complex.
▶ HMG1 proteins are involved in chromatin structure.

UFO1
▶ cellular component nuclear ubiquitin ligase complex
▶ molecular function ubiquitin-protein ligase activity and biological

processes ubiquitin-dependent protein catabolism.

PKC1
▶ cellular component 1,3 beta-glucan synthase complex.
▶ known: cellular component intracellular and biological processes cell

wall organization and biogenesis.
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More Novel Functional Annotations

YKL067W
▶ biological process signal transduction and cellular component spindle

pole body.
▶ molecular function nucleoside-diphosphate kinase (NDK) activity; NDK

interferes with the mating pheromone signal transduction in S. pombe.

YCR099C and YBL059W
▶ biological process ER to Golgi transport and cellular component COPII

vesicle coat.
▶ Vesicles with COPII coats are found associated with ER membranes at

steady state.
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Overall Correctness of Predictions

207 predictions for functions with F-score > 75%.

15 predictions are correct.

11 predictions at distance 1 from true function.

49 predictions at distance 2 from true function.

Remaining predictions not validated.

Validated functions include nucleolus, chromatin remodeling complex,
snoRNA binding, RNA binding, vesicle-mediated transport.
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Features of the GAIN System

Systematic algorithm for propagating evidence in an FLN.

Clean separation between construction of functional links and
prediction of function.

For each function, predictions are maximally consistent.

Each prediction associated with measures of confidence.

Propagation diagrams provide intuitive visualisation of evidence flow.

VIRGO webserver for invoking GAIN and querying and browsing its
predictions.
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Algorithms: Local and Local+

Local Local+

su =

∑
v∈Nu

wuv sv∑
v∈Nu

wuv
su =

∑
v∈Nu

wuv sv∑
v∈Nu

wuv

Nu is the set of neighbours of gene u.

Local+ does not use negative examples, i.e., sv is initially 0 for
negative examples.
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Graph cuts
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Transform the problem to computing minimum cuts in a flow network
(Nabieva et al., Proc. ISMB 2005; Murali, Wu, and Kasif, Nature
Biotech., 2006).
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Algorithm: FunctionalFlow

(Nabieva et al., ISMB 2005.)

No negative examples.

Each node sends flow to or receives flow from each neighbour.

s(v) is the total inflow into node over multiple phases.

Number of phases is input to the algorithm (half the diameter of the
network suggested.)

g0(u, v) = 0

s0(u) =

{
∞ if u is a positive example

0 otherwise

gt(u, v) =

0 if st−1(u) < st−1(v)

min
(
wuv , st−1(u)

wuv∑
y∈Nu

wuy

)
otherwise

st(u) = st−1(u) +
∑
v∈Nu

(gt(v , u)− gt(u, v))
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Algorithm: SinkSource

RLP7
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TIF6

NOP15

BRX1

SSF1
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BUD20

SDA1

NOC2

NOP2

ERB1 NUG1

NOP7

Compute voltage at each
unknown example by minimising∑

(u,v)

wuv (su − sv )
2

Solve linear system of equations:

sv =

∑
u wuv su∑
u wuv
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Matrix Formulation of SinkSource

sv =

∑
u wuv su∑
u wuv(∑

u

wuv

)
sv =

∑
u

wuv su

Define yu = su only for positive and negative examples and split RHS,(∑
u

wuv

)
sv =

∑
u

wuv su +
∑
u

wuvyu

Define W = [wuv ], D = [
∑

u wuv ], L = D −W , s = [su] and y = [
∑

u wuvyu].

Ds = Ws + y

(D −W )s = Ls = y

s = L−1y
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Algorithm: SinkSource+
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Compute voltage at each
unknown example by minimising∑
(u,v)

wuv (su − sv )
2

+ λ
∑
v

s2v

Solve linear system of equations:

sv =

∑
u wuv su

λ+

∑
u wuv

Matrix form is s = (λI + L)−1y .
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