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Graphs

Graph ≡ Network

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: gene and protein networks,
our bodies (nervous and circulatory systems, brains).

Other examples: computer networks, the World Wide Web, ecology
(food webs), social networks, software systems, job scheduling, VLSI
circuits, cellular networks, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Graphs

Graph ≡ Network

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: gene and protein networks,
our bodies (nervous and circulatory systems, brains).

Other examples:

computer networks, the World Wide Web, ecology
(food webs), social networks, software systems, job scheduling, VLSI
circuits, cellular networks, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Graphs

Graph ≡ Network

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: gene and protein networks,
our bodies (nervous and circulatory systems, brains).

Other examples: computer networks, the World Wide Web, ecology
(food webs), social networks, software systems, job scheduling, VLSI
circuits, cellular networks, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Graphs

Graph ≡ Network

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: gene and protein networks,
our bodies (nervous and circulatory systems, brains).

Other examples: computer networks, the World Wide Web, ecology
(food webs), social networks, software systems, job scheduling, VLSI
circuits, cellular networks, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Euler and Graphs

Devise a walk through the city that
crosses each of the seven bridges exactly once.
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Definition of an Undirected Graph
Undirected graph G = (V ,E ): set V of nodes and set E of edges.

I Each element of E is an unordered pair of nodes.
I Edge (u, v) is incident on u, v ; u and v are neighbours of each other.
I G contains no self loops.

a

b

c

d
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Paths and Cycles in Graphs
a

b

c

d

A v1-vk path in an undirected graph G = (V ,E ) is a sequence of
nodes v1, v2, . . . , vk−1, vk ∈ V such that for every i , 1 ≤ i < k ,
(vi , vi+1) is an edge in E .

A path is simple if all its nodes are distinct.
A cycle is a path where the first k − 1 nodes are distinct and v1 = vk .
An undirected graph G is connected if for every pair of nodes
u, v ∈ V , there is a u-v path in G .
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Bridges to Graphs

a

b

c

d

Eulerian tour

Given an undirected graph G (V ,E ),

construct an Eulerian tour, i.e., a path in G that traverses each
edge in E exactly once,

if such a tour exists

.
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Examples of Euler Tours
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a

b

c

d

e
5

6

7

8

9

10

1 2

3
4

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

e

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

e

4 1

2
3

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

e

1 2

3
4

1 2

3
4

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

e

7

8

9

6

5

1 2

3
4

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

12

3

45

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

Examples of Euler Tours

a

b

c

d

T. M. Murali January 25, 2022 CS 4884: Computing the Brain



Introduction Euler Tours Heilholzer’s Algorithm Hamiltonian Cycles

What Euler Proved
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What Euler Proved (in English)
a

b
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Degree d(v) of a node v is the number of edges incident on it.

Euler’s conclusion:
1 If there are more than two nodes with odd degree, then the graph has

no Eulerian tour.
2 If exactly two nodes have odd degree, then there is tour that starts at

one of these nodes and ends at the other node.
3 If all nodes have even degree, then there exists a tour starting at any

node.
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What Didn’t Euler Prove?

Implicit assumption: G is connected.

Euler’s conditions (1741) were necessary. Hierholzer proved their
sufficiency (1873).

What about constructing such a tour if it exists?

I We must go through the effort to write out a path that is correct.
I Method to accomplish this was trivial, and Euler did not want to spend

a great deal of time on it.

Hierholzer provided an algorithm.
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Hierholzer’s Algorithm
a

b

c

d
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3

3

If there are two nodes in G with
odd degree, call them s and t.

Otherwise, let s be any node in
G .

u ← s #u denotes the currently-visited node.
while d(u) > 0 do

Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while
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3 If there are two nodes in G with
odd degree, call them s and t.
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If there are two nodes in G with
odd degree, call them s and t.

Otherwise, let s be any node in
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u ← s #u denotes the currently-visited node.
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Output u.
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Properties of Heilholzer’s Algorithm
a

b

c

d
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3

b a d b c d

u ← s
while d(u) > 0 do

Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while

Will the algorithm terminate?

Yes, because we traverse a new edge in
each iteration.

If it terminates, what can we say about node u at termination?

I If G had no nodes of odd degree, then u = s.
I If G had two nodes of odd degree, then u = t.

Will all edges of G have been traversed upon termination?

No! Set u
to be any node on the path output so far and repeat.
Algorithm’s running time is O(|V |+ |E |), i.e., linear in the size of G .
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Properties of Heilholzer’s Algorithm
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Visiting Nodes Rather than Edges

a

b

c

d

Eulerian tour

Given an undirected graph G (V ,E ),

construct an Eulerian tour, i.e., a path in G that traverses each
edge in E exactly once, if such a tour exists.
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Visiting Nodes Rather than Edges

a

b

c

d

Hamiltonian cycle

Given an undirected graph G (V ,E ),

construct an Hamiltonian cycle, i.e., a cycle in G that traverses
each node in V exactly once, if such a tour exists.
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Conditions for Existence of Hamiltonian Cycle
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G has a Hamiltonian cycle if G is a cycle.

An n-node graph G has a Hamiltonian cycle

I if each node has degree n − 1.
I each node has degree n − 2.
I each node has degree ≥ n/2 (Dirac, 1952).
I two disconnected nodes with sum of degrees ≥ n (Ore, 1952).
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Status of Hamiltonian Cycle Problem

Hamiltonian cycle

Given an undirected graph G (V ,E ),

construct an Hamiltonian cycle, i.e., a cycle in G that traverses
each node in V exactly once, if such a tour exists.

The Hamiltonian cycle problem is NP-complete,

it is very unlikely
that we will find a polynomial time algorithm to check if an
undirected graph contains such a cycle.

Algorithms for computing Hamiltonian cycle:

I Brute force: try all permutations.

Running time is O(n2n!).

I Dynamic programming: running time of O(n22n) (Held and Karp
1962).

I Fastest known algorithm runs in time O(1.657n) (Björklund 2010).
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