CS 4884: Connectivity Matrices and Node Degrees

T. M. Murali

February 1, 2022

T. M. Murali

February 1, 2022

CS 4884: Computing the Brain

Definition of an Undirected Graph Weighted, undirected graph G = (V, E, w):

- ▶ set *V* of nodes.
- set E of edges.
 - * Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
- ▶ Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

Definition of an Undirected Graph $C = (V \in W)$

- Weighted, undirected graph G = (V, E, w):
 - set V of nodes.
 - set E of edges.
 - **\star** Each element of *E* is an unordered pair of nodes.
 - * Exactly one edge between any pair of nodes (G is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
 - ▶ Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

Definition of an Undirected Graph Weighted, undirected graph G = (V, E, w):

- ▶ set *V* of nodes.
- ▶ set *E* of edges.
 - ***** Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
- ▶ Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

Definition of an Undirected Graph Weighted, undirected graph G = (V, E, w):

- ▶ set *V* of nodes.
- set E of edges.
 - * Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

• Weighted, directed graph G = (V, E, w):

- set V of nodes.
- set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- Weighted, directed graph G = (V, E, w):
 - ► set *V* of nodes.
 - set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

• Weighted, directed graph G = (V, E, w):

- set V of nodes.
- set E of edges.
 - ***** Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its head; *e* is directed from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

• Weighted, directed graph G = (V, E, w):

- set V of nodes.
- set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- ▶ Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

Types of Brain Graphs		
	Structural connectivity	Functional connectivity
Microscale		
Mesoscale		
Macroscale		

	Types of B Structural connecti	rain G vity	Graphs Functio	nal connect	ivity
Microscale	SEM, Tracking neuro	ons			
Mesoscale					
Macroscale					
	Segmented neurons Layout graph	Soma: Netrochem Arxonal bra Arxonal bra Arxonal bra Arxonal bra Neuron ID, three-dimen diameter Dendritic t Neuron ID, three-dimen gymaptic i Pymaptic i Pymaptic i Connectivity	anch: usional coordinates, type anch: usional coordinates, oranch: usional coordinates, unction: streuron ID, usional coordinates, eeicles	•	

	Types of Bra	in G y	Graphs Function	onal connectivity
Microscale	SEM, Tracking neurons Directed, weighted			
Mesoscale				
Macroscale				
	Segmented neurons Layout graph	Soma: Neuron ID, three-dimen diameter Dendritic t Neuron ID, three-dimen diameter Synaptic ju Pre- and po three-dimen number of v Connectivity	esional coordinates, type anch: sional coordinates, yranch: sional coordinates, unction: sional coordinates, esides	• • •

Types of Brain Graphs			
	Structural connectivit	у	Functional connectivity
	SEM, Tracking neurons		Electrodes, correlations
Microscale	Directed, weighted		Weighted, can be negative,
			can be directed
Mesoscale			
Macroscale			
	Segmented neurons Layout graph	Soma: Neuron ID, three-dimer	ensional coordinates, type
	× ×	Axonal bra Neuron ID, three-dimer	anch: an
	¥.	diameter Dendritic I Neuron ID,	oranch: ©
		diameter Synaptic ji	unction: • stoauron ID
		three-dimer number of v	isional coordinates, resicles
		a(b(c)	ð
	(j)	Connectivity	/ graph

Types of Brain Graphs		
	Structural connectivity	Functional connectivity
	SEM, Tracking neurons	Electrodes, correlations
Microscale	Directed, weighted	Weighted, can be negative,
		can be directed
Mesoscale	Invasive tract tracing	
Macroscale		

Types of Brain Graphs		
	Structural connectivity	Functional connectivity
	SEM, Tracking neurons	Electrodes, correlations
Microscale	Directed, weighted	Weighted, can be negative,
		can be directed
Mesoscale	Invasive tract tracing	
	Directed, weighted	
Macroscale		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mososcalo	Invasive tract tracing	Did not discuss	
wesuscale	Directed, weighted		
Macroscale			

Types of Brain Graphs			
	Structural connectivity Functional connectivity		
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mesoscale	Invasive tract tracing	Did not discuss	
	Directed, weighted		
	Diffusion MRI, tractography		
Macroscale			

Types of Brain Graphs			
	Structural connectivity Functional connectivity		
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mesoscale	Invasive tract tracing	Did not discuss	
	Directed, weighted		
	Diffusion MRI, tractography		
Macroscale	Undirected, weighted		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Masascala	Invasive tract tracing	Did not discuss	
wesuscale	Directed, weighted		
	Diffusion MRI, tractography	fMRI, correlations	
Macroscale	Undirected, weighted		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mesoscale	Invasive tract tracing	Did not discuss	
	Directed, weighted		
	Diffusion MRI, tractography	fMRI, correlations	
Macroscale	Undirected, weighted	Weighted, can be negative	
		can be directed	

Thresholding and Binarisation

T. M. Murali

February 1, 2022

CS 4884: Computing the Brain

Thresholding and Binarisation

Matrix after thresholding to retain only the 20% strongest weights.

Thresholding and Binarisation

Matrix after thresholding and binarisation.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} d(v)) =$

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - ► Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is O(n + ∑_{v∈G} d(v)) = O(n + m), which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - ► Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in O(d(u)) time.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row *i* and column *j* is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is O(n + ∑_{v∈G} d(v)) = O(n + m), which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in O(d(u)) time.
- We can modify these ideas for directed graphs.

Visualising Matrices

Visualising Matrices

Visualising Matrices

Anatomical Projection

Circular Layout

Force-Directed Layout

Spring-Embedded Layout

Node Degree

Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

Α в 1 С k = 31 1 D Ε 1 F k = 3Α F D F (a)

Node Degree

Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

• Directed graph G = (V, E):

Node Degree

 Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

- Directed graph G = (V, E):
 - ► in-degree d_{in}(v) of node v is the number of edges with v as the head.
 - out-degree d_{out}(v) of node v is the number of edges with v as the tail.

$$d_{in}(v) = |\{u ext{ such that } (u,v) \in E\}|$$

 $d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}|$

• Textbook also defines *strength* of a node: total weight of edges incident on that node.

Node Degree

 Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

- Directed graph G = (V, E):
 - ► in-degree d_{in}(v) of node v is the number of edges with v as the head.
 - out-degree d_{out}(v) of node v is the number of edges with v as the tail.

$$d_{in}(v) = |\{u ext{ such that } (u,v) \in E\}|$$

 $d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}|$

• Textbook also defines *strength* of a node: total weight of edges incident on that node.

• A way to summarize information about a graph.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
- Define n(k) = np(k), the number of nodes with degree k.

$$\sum_{k\geq 0} kp(k) = \frac{1}{n} \sum_{k\geq 0} kn(k)$$

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
- Define n(k) = np(k), the number of nodes with degree k.

$$\sum_{k \ge 0} kp(k) = \frac{1}{n} \sum_{k \ge 0} kn(k) = \frac{1}{n} \sum_{v \in V} d(v) = \frac{2m}{n}$$

Degree Distributions of Real-World Networks

• Degree distributions of many real-world networks follow a power law (Barabasi and Albert, 1999).

$$p(k) = \Pr\{ \text{degree } = k \} \sim k^{-\gamma}$$

• In most networks, $2 < \gamma < 3$.

Degree Distributions of Real-World Networks

• Degree distributions of many real-world networks follow a power law (Barabasi and Albert, 1999).

$$p(k) = \Pr\{ \text{degree } = k \} \sim k^{-\gamma}$$

- In most networks, $2 < \gamma < 3$.
- Read Box 4.1 on pages 127–128 of the textbook on the ubiquity of power laws.

Degree Distributions of Real-World Networks

• Degree distributions of many real-world networks follow a power law (Barabasi and Albert, 1999).

$$p(k) = \Pr\{ \text{degree } = k \} \sim k^{-\gamma}$$

- In most networks, $2 < \gamma < 3$.
- Read Box 4.1 on pages 127–128 of the textbook on the ubiquity of power laws.
- Broad-scale networks show power law behaviour over limited range of degree, e.g.,

$$p(k) = \mathsf{Pr}\{\mathsf{degree}\ = k\} \sim k^{-\gamma} e^{-k/k_c}$$

Example of Degree Distributions of Brain Networks

In/out degree distributions of the C. elegans neuronal network

Example of Degree Distributions of Brain Networks

Degree distribution of a 383-region macaque connectome collated from published tract-tracing studies.

T. M. Murali

Example of Degree Distributions of Brain Networks

Degree distribution of a 78-region human cortical connectome from diffusion MRI (+: data, solid: exponentially truncated power law, dashed: exponential, dotted: power law).