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Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small char-
acteristic path lengths, like random graphs.

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.
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Random Graps

@ What is a random graph?

@ How do we create a random unweighted, undirected graph on n
nodes?

@ Question is under-specified. There are many approaches:

© Idea 1: From the set of all graphs of n nodes, pick one uniformly at
random.

@ Idea 2: Specify the number of edges m. From the set of all graphs of n
nodes and m edges, pick one uniformly at random.

© Idea 3: Specify a probability 0 < p < 1. For every pair of nodes, add
an edge between the nodes with probability p.
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From the set of all graphs of n nodes, pick one uniformly at random.
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Idea 1 for Creating Random Graphs

From the set of all graphs of n nodes, pick one uniformly at random.
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@ How many graphs can there be on n nodes?
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Idea 1 for Creating Random Graphs

From the set of all graphs of n nodes, pick one uniformly at random.
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@ How many graphs can there be on n nodes?
» To make a graph, we have two options for each edge: include it or
exclude it.
» Therefore, there are 2(3) graphs possible on n nodes.
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@ How many graphs can there be on n nodes?
» To make a graph, we have two options for each edge: include it or
exclude it.
» Therefore, there are 2(3) graphs possible on n nodes.

@ How do we implement Idea 17 How do we select one of these graphs
with probability —1+?
2(3)
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W-S Graphs

Idea 1 for Creating Random Graphs

From the set of all graphs of n nodes, pick one uniformly at random.
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@ How many graphs can there be on n nodes?
» To make a graph, we have two options for each edge: include it or
exclude it.
» Therefore, there are 2(3) graphs possible on n nodes.

@ How do we implement Idea 17 How do we select one of these graphs

with probability —1+?
2(3)

@ Explicitly construct all 2(2) and then select one uniformly at random.
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Idea 1 for Creating Random Graphs

W-S Graphs

From the set of all graphs of n nodes, pick one uniformly at random.

c) a
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@ How many graphs can there be on n nodes?

» To make a graph, we have two options for each edge: include it or

exclude it.

» Therefore, there are 2(3) graphs possible on n nodes.

@ How do we implement Idea 17 How do we select one of these graphs

with probability —1+?
2(3)

@ Explicitly construct all 2(2) and then select one uniformly at random.

Running time is O(n22(g)). Too slow!
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W-S Graphs

Idea 1 for Creating Random Graphs

From the set of all graphs of n nodes, pick one uniformly at random.

a a) @ | @
©—@ © @© @©o—@o© @

@ How many graphs can there be on n nodes?
» To make a graph, we have two options for each edge: include it or
exclude it.
» Therefore, there are 2(3) graphs possible on n nodes.
@ How do we implement Idea 17 How do we select one of these graphs
with probability —1+?
2(3)

@ Explicitly construct all 2(2) and then select one uniformly at random.
Running time is O(n22(g)). Too slow!

e For every pair of nodes, add an edge with probability 1/2. Running
time is O(n?).
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From the set of all graphs of n nodes, pick one uniformly at random.

@ What is the expected degree of a node?
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SR Graphs e
Properties of Random Graphs Created by Idea 1

From the set of all graphs of n nodes, pick one uniformly at random.

@ What is the expected degree of a node? (n—1)/2.
@ What is the expected number of edges in the graph?
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SR Graphs e
Properties of Random Graphs Created by Idea 1

From the set of all graphs of n nodes, pick one uniformly at random.

@ What is the expected degree of a node? (n—1)/2.
@ What is the expected number of edges in the graph? n(n—1)/4.

@ On average, these graphs are very dense.
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Erdos-Rényi Graphs
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A mathematician is a device for turning coffee into theorems.
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Erdos-Rényi Graphs

Idea 3: Specify a probability 0 < p < 1.
For every pair of nodes, add an edge between the nodes with probability p.

@ Series of papers in the 1960s setting the foundation of random graph
theory.

@ Framework for generating a random graph.

e G(n,p): an undirected, unweighted graph (family) with n nodes.
o To generate a graph in G(n, p):

» For each pair (u, v) of ('2’) node pairs, connect v and v by an edge with
probability p.

On the evolution of random graphs, P. Erd8s and A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61, 1960.
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Erdos-Rényi Graphs

Idea 3: Specify a probability 0 < p < 1.
For every pair of nodes, add an edge between the nodes with probability p.
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W-S Graphs

Erdos-Rényi Graphs

Idea 3: Specify a probability 0 < p < 1.
For every pair of nodes, add an edge between the nodes with probability p.

@ Series of papers in the 1960s setting the foundation of random graph
theory.

@ Framework for generating a random graph.

e G(n,p): an undirected, unweighted graph (family) with n nodes.
o To generate a graph in G(n, p):
» For each pair (u, v) of ('2’) node pairs, connect v and v by an edge with
probability p.
» How do you “do something” with probability p?
» Generate a random number x between 0 and 1 under the uniform
distribution. If x < p, then “do something”, else “do the other thing".

On the evolution of random graphs, P. Erd8s and A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61, 1960.
T. M. Murali February 3 and 8, 2022
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Degrees and Connectivity in Erdos-Rényi Graphs

@ To generate a graph in G(n, p): For each pair (u, v) of (g) nodes,
connect u and v by an edge with probability p.

@ How many edges does this graph have on average?
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LR WS Gepks
Degrees and Connectivity in Erdos-Rényi Graphs

@ To generate a graph in G(n, p): For each pair (u, v) of (Z) nodes,
connect u and v by an edge with probability p.

@ How many edges does this graph have on average? n(n—1)p/2.
@ What is the expected degree of a node? (n— 1)p.
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Degree Distribution
e What is the degree distribution of G(n, p)?
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e What is the degree distribution of G(n, p)?
@ What is the probability that a node v has degree k?
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Degree Distribution
e What is the degree distribution of G(n, p)?
@ What is the probability that a node v has degree k?

» Connect (probability p) v to k neighbours out of n — 1 nodes and not
connect (probability 1 — p) to the rest.
» Probability that v has degree k follows the binomial distribution

Pr(d(v) = k) = (”; 1) (1 )t
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Degree Distribution
e What is the degree distribution of G(n, p)?
@ What is the probability that a node v has degree k?

» Connect (probability p) v to k neighbours out of n — 1 nodes and not
connect (probability 1 — p) to the rest.
» Probability that v has degree k follows the binomial distribution
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Binomial Identities
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Binomial Identities

n

k=0

(p+(1-p)" ' =1

@ Simply stating the degree of a node must take exactly one value
between 0 and n — 1.

k=0
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Binomial Identities

n

k=0

(p+(1-p)" ' =1

@ Simply stating the degree of a node must take exactly one value
between 0 and n — 1.

n n—1 n—1
Sok(" )t pr et = Y kpetatn) = K
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L ERGrphs R
Binomial Identities

n

k=0

(p+(1-p)" ' =1

@ Simply stating the degree of a node must take exactly one value
between 0 and n — 1.

n n—1 n—1
Sok(" )t pr et = Y kpetatn) = K
k=0 k=0

(n—1)p = E[d(v)]
@ The expected degree of a node is (n — 1)p.

k=0
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L ERGrphs R
Binomial Identities

k=0

k=0 =
(p+(1-p)" ' =1

@ Simply stating the degree of a node must take exactly one value
between 0 and n — 1.

n n—1 n—1
Sok(" )t pr et = Y kpetatn) = K
k=0 k=0

(n—1)p = E[d(v)]
@ The expected degree of a node is (n — 1)p.
@ The expected number of edges in G(n,p) is n(n—1)p/2.
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Guarantee that a Random Graph is Connected

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.

O ORNOR®
9‘9‘0 0 (0
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https://www.youtube.com/watch?v=mpe44sTSoF8

Guarantee that a Random Graph is Connected

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.
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Guarantee that a Random Graph is Connected

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.

e Consider the evolution of G(n, p) as p increases.
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Guarantee that a Random Graph is Connected

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.

e Consider the evolution of G(n, p) as p increases.
@ When p is close to 0, graph has many small connected components.
@ When p is close to 1, graph is very dense (has almost all the edges).

@ When do all nodes in the graph become connected into one
component?
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https://www.youtube.com/watch?v=mpe44sTSoF8

Guarantee that a Random Graph is Connected

Specifically, we require n > k > In(n) > 1, where k > In(n)
guarantees that a random graph will be connected.

e Consider the evolution of G(n, p) as p increases.
@ When p is close to 0, graph has many small connected components.
@ When p is close to 1, graph is very dense (has almost all the edges).

@ When do all nodes in the graph become connected into one
component?

The evolution of the G(n, p) random graph (Video, 4 min 51 sec)
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https://www.youtube.com/watch?v=mpe44sTSoF8
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Phase Transitions

Value of p  Property of G(n,p)
=0

p< (1=9)

p> (1+5)

p< (1- s)lnn

p> (1+6) Inn

p=1
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Phase Transitions

Value of p  Property of G(n,p)
p= Has no edges

p=1 Is a complete graph.
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LB Graphs
Phase Transitions
Value of p  Property of G(n,p)

p=0 Has no edges
p < @ All connected components are of size log n.
p > @ Has a unique connected component containing a positive
fraction of the nodes (giant component)!
p< (I1—¢)Inn
n

(14+¢€)Inn
p > n
p=1 Is a complete graph.
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LB Graphs
Phase Transitions
Value of p  Property of G(n,p)

p=0 Has no edges
p < @ All connected components are of size log n.
p > @ Has a unique connected component containing a positive

fraction of the nodes (giant component)!

p < w Has at least one isolated node.
p > w Is connected! k in Watts-Strogatz is np.
p=1 Is a complete graph.
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Phase Transitions

Value of p  Property of G(n,p)
p=0 Has no edges
p < @ All connected components are of size log n.
p > @ Has a unique connected component containing a positive
fraction of the nodes (giant component)!
p < w Has at least one isolated node.
p > w Is connected! k in Watts-Strogatz is np.
The average shortest path length is Mﬁ
Path lengths are logarithmic in the number of nodes!
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Phase Transitions

Value of p  Property of G(n,p)
=0 Has no edges

p < D) All connected components are of size log n.

p > (1+E) Has a unique connected component containing a positive
fraction of the nodes (giant component)!

p < w Has at least one isolated node.

p > w Is connected! k in Watts-Strogatz is np.
The average shortest path length is Mﬁ
Path lengths are logarithmic in the number of nodes!

p=1 Is a complete graph.

Statements hold with high probability, e.g., if p >

(1+6n) Inn, then

1
Pr{G(n, p) is not connected } ~ o
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Clustering Coefficient

@ Measures the extent of clusters/cliques around a node, on average.
o Clustering coefficient c(v) for a node v is the fraction of pairs of its
neighbours that are themselves connected.
o Clustering coefficient ¢(G) of a graph G is the average of the
clustering coefficients of its nodes.
> Note that | am using lowercase ¢ (since ¢ is a number), whereas the

paper uses uppercase C.
» Technically, c(v) should have the graph G as an argument, but we will
be sloppy and ignore it.
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W-S Graphs

Clustering Coefficient

9‘9‘9 ONE

@ Measures the extent of clusters/cliques around a node, on average.
o Clustering coefficient c(v) for a node v is the fraction of pairs of its
neighbours that are themselves connected.
o Clustering coefficient ¢(G) of a graph G is the average of the
clustering coefficients of its nodes.
> Note that | am using lowercase ¢ (since ¢ is a number), whereas the
paper uses uppercase C.
» Technically, c(v) should have the graph G as an argument, but we will
be sloppy and ignore it.
@ What is the clustering coefficient of a lattice? A complete graph?
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W-S Graphs

Clustering Coefficient

9‘9‘9 ONE

@ Measures the extent of clusters/cliques around a node, on average.
o Clustering coefficient c(v) for a node v is the fraction of pairs of its
neighbours that are themselves connected.
o Clustering coefficient ¢(G) of a graph G is the average of the
clustering coefficients of its nodes.
> Note that | am using lowercase ¢ (since ¢ is a number), whereas the
paper uses uppercase C.
» Technically, c(v) should have the graph G as an argument, but we will
be sloppy and ignore it.
@ What is the clustering coefficient of a lattice? A complete graph? 0
and 1, respectively.

T. M. Murali February 3 and 8, 2022
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Clustering Coefficient of an Erdos-Rényi Graph

@ Assume p > w

@ We know that the average shortest path length in G(n, p) is ~ In("l‘—jr's)
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LR WS Gepks
Clustering Coefficient of an Erdos-Rényi Graph

@ Assume p > w

@ We know that the average shortest path length in G(n, p) is ~ In("l‘—jr's)

e What is the clustering coefficient of G(n, p)?
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LR WS Gepks
Clustering Coefficient of an Erdos-Rényi Graph

@ Assume p > w

@ We know that the average shortest path length in G(n, p) is ~ In(l?—is)

e What is the clustering coefficient of G(n, p)?

» A node u has (n — 1)p nodes on average.
» What is the probability that two neighbours v and w are connected?
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LR WS Gepks
Clustering Coefficient of an Erdos-Rényi Graph

@ Assume p > w

@ We know that the average shortest path length in G(n, p) is ~ In(l?—is)

e What is the clustering coefficient of G(n, p)?

» A node u has (n — 1)p nodes on average.
» What is the probability that two neighbours v and w are connected? p!
» Hence, the clustering coefficient of G(n,p) is p < 1.

T. M. Murali February 3 and 8, 2022
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Milgram’s Experiment

It's a small world! (Video, 1 min 36 sec)
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https://www.youtube.com/watch?v=NRWSF1c0Ez0

R e Grechs S
Milgram’s Experiment
It's a small world! (Video, 1 min 36 sec)

Criticisms
@ Overestimates path lengths.

@ Underestimates path lengths.
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https://www.youtube.com/watch?v=NRWSF1c0Ez0

E-R Graphs

Milgram’s Experiment
It's a small world! (Video, 1 min 36 sec)

Criticisms
@ Overestimates path lengths.

@ Underestimates path lengths.

Conclusions. Which is correct?
@ Some paths in social networks are short.
@ All paths between all pairs of nodes are short.

@ The average shortest path length is small. Average taken over all
pairs of nodes.
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Milgram’s Experiment
It's a small world! (Video, 1 min 36 sec)

Criticisms
@ Overestimates path lengths.

@ Underestimates path lengths.

Conclusions. Which is correct?
@ Some paths in social networks are short.
@ All paths between all pairs of nodes are short.

@ The average shortest path length is small. Average taken over all
pairs of nodes.

Burning question

How do networks with small average shortest path length arise?

v
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SERIGERHSEEEE TR
Motivation

o Consider two measures for a graph G:

» /(G), the average shortest path length in G.
» ¢(G), the clustering coefficient of G.
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SERIGERHSEEEE TR
Motivation

o Consider two measures for a graph G:

» /(G), the average shortest path length in G.
» ¢(G), the clustering coefficient of G.

e G(n,p), p> w:

Inn

I(G) (small) c(G) = p (small)

- In np
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SERIGERHSEEEE TR
Motivation

@ Consider two measures for a graph G:

» /(G), the average shortest path length in G.
» ¢(G), the clustering coefficient of G.

° (n P) p> (1+€)Inn
I(G) = Ilnn_n,;) (small) c(G) = p (small)

@ Regular ring graph: n nodes in a ring, each node connected to the
next k/2 nodes appearing in clockwise order around the ring.

I(G) = c(G) =
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» /(G), the average shortest path length in G.
» ¢(G), the clustering coefficient of G.

° (n P) p> (1+€)Inn
I(G) = Ilnn_n,;) (small) c(G) = p (small)

@ Regular ring graph: n nodes in a ring, each node connected to the
next k/2 nodes appearing in clockwise order around the ring.

I(G) = n/2k (large) c(G) =
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E-R Graphs

Motivation

@ Consider two measures for a graph G:
» /(G), the average shortest path length in G.
» ¢(G), the clustering coefficient of G.

° (n P) p> (l—l—s)lnn
I(G) = Ilnn_n,;) (small) c(G) = p (small)

@ Regular ring graph: n nodes in a ring, each node connected to the
next k/2 nodes appearing in clockwise order around the ring.

I(G) = n/2k (large) c(G) = =~ 3/4 (large)

@ Real world networks have small average shortest path lengths (like
G(n, p)) but large clustering coefficients (like ring graph).
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Watts-Strogatz Model

Regular Small-world Random

p=0 > p=1
Increasing randomness

@ Three parameters: n, number of nodes; k: degree of each node; p:
rewiring probability. This p is different from the p in E-R graphs.
@ Rewire regular ring graph in k/2 rounds. In round j,

@ For each node i, consider edge (i, + j).
@ Pick a candidate node / uniformly at random between 1 and n.
© With probability p, replace (i, i + j) with (i,/) if

T. M. Murali February 3 and 8, 2022



Watts-Strogatz Model

Regular Small-world Random

p=0 > p=1
Increasing randomness

@ Three parameters: n, number of nodes; k: degree of each node; p:
rewiring probability. This p is different from the p in E-R graphs.
@ Rewire regular ring graph in k/2 rounds. In round j,

@ For each node i, consider edge (i, + j).

@ Pick a candidate node / uniformly at random between 1 and n.

© With probability p, replace (i, i+ j) with (i,/) if i # / and (i,/) not
already in graph.

T. M. Murali February 3 and 8, 2022



| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

1(0) =
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

1(0)=n/2k  ¢(0)=
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

I0)=n/2k  c(0)= ~3/4
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

1(0) = n/2k c(0)= ~3/4
Ring lattice is large-world and highly clustered.

I(1) =
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

1(0) = n/2k c(0)= ~3/4
Ring lattice is large-world and highly clustered.

I(1)=Inn/Ink c(1) =
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.
c(p): average clustering coefficient for ring graph rewired with prob. p.

1(0) = n/2k c(0)= ~3/4
Ring lattice is large-world and highly clustered.

I(1)=Inn/Ink c(l)=k/n
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| and ¢ for Watts-Strogatz Graphs

Regular Small-world Random

p=0 » p=1
Increasing randomness

I(p): average shortest path length for ring graph rewired with prob. p.

c(p): average clustering coefficient for ring graph rewired with prob. p.
1(0) = n/2k c(0) = ~3/4

Ring lattice is large-world and highly clustered.

I(1)=Inn/Ink c(l)=k/n
Random ring graph is small-world but poorly clustered.

Are there values of p for which /(p) is small but c(p) is large? J
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Observations

@ /(p) becomes small due to the addition of a small number of
“long-range” edges.

@ These short cuts connect nodes that would otherwise be very far
apart.

@ Non-linear effect on /(p): Short cuts also contract the distance
between neighbours of the connected nodes, their neighbours, and so
on.

T. M. Murali February 3 and 8, 2022


https://www.youtube.com/watch?v=TcxZSmzPw8k

oo W-SGraphs
Observations

@ /(p) becomes small due to the addition of a small number of
“long-range” edges.

@ These short cuts connect nodes that would otherwise be very far
apart.

@ Non-linear effect on /(p): Short cuts also contract the distance
between neighbours of the connected nodes, their neighbours, and so
on.

@ Linear effect on c(p): Removal of an edge from a node's
neighbourhood has a linear effect on ¢(p).

@ At the local level, transition to a small world is almost undetectable.
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https://www.youtube.com/watch?v=TcxZSmzPw8k

E-R Graphs

Observations

@ /(p) becomes small due to the addition of a small number of
“long-range” edges.

@ These short cuts connect nodes that would otherwise be very far
apart.

@ Non-linear effect on /(p): Short cuts also contract the distance
between neighbours of the connected nodes, their neighbours, and so
on.

@ Linear effect on c(p): Removal of an edge from a node's
neighbourhood has a linear effect on ¢(p).

@ At the local level, transition to a small world is almost undetectable.

Do real-world networks have small / and large c? )

The Science of Six Degrees of Separation (Video, 9 min 22 sec)
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Actor Network

Katherine Hepbum
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Node = Actor

Edge = Collaboration

Edge weight =1

n = 225,226

m = (225,226 x 61)/2 = 6,869, 393

‘Seurce: The ntamet Movie Otabase & The Orace of Bacen Kathy Griffin
Images: Wikcammons W
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Power Network

T. M. Murali February 3 and 8, 2022



Power Network

Node = Generators, transformers, and substations

Edge = High-voltage transmission line

Edge weight = 1

n=4,941
m = (4,941 x 2.67)/2 = 6,596
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C elegans connectome
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C elegans connectome
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Real-world Networks are Small World

Table 1 Empirical examples of small-world networks

l—actual Lrandom Cactua\ Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 ra 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
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https://www.youtube.com/watch?v=Lq5hlsJAOfc

Real-world Networks are Small World

Table 1 Empirical examples of small-world networks

l—actual Lrandom Cactua\ Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 ra 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

The pattern in Nature's networks (Video, 3 min 25 sec)
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