
Components Shortest Paths

CS 4884: Components and Shortest Paths

T. M. Murali

February 15 and 17, 2022

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Results of Poll

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Results of Poll

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Results of Poll

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Summary of Course Thus Far

History of neuroscience

Graphs (Definitions, basic concepts, Euler tours)

Brain graphs (types of nodes and edges, experimental methods,
Chapter 2)

Brain connectivity matrices and node degrees (Chapters 3 and 4)

Clustering coefficient and small world networks (Chapter 8.2)

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Plan till Spring Break

Clustering coefficient is a local measure of graph density.

Small world measures capture global features of graphs.

Are there intermediate notions of graph density?

Subgraphs that represent backbones of network topology
(components, shortest paths, Chapter 6.1, 7.1, 7.2, February 15 and
17)

Cores and Modularity (Chapter 6.2, 9.1, February 22, 24, March 1)

Describe group projects (March 3).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Plan till Spring Break

Clustering coefficient is a local measure of graph density.

Small world measures capture global features of graphs.

Are there intermediate notions of graph density?

Subgraphs that represent backbones of network topology
(components, shortest paths, Chapter 6.1, 7.1, 7.2, February 15 and
17)

Cores and Modularity (Chapter 6.2, 9.1, February 22, 24, March 1)

Describe group projects (March 3).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Plan till Spring Break

Clustering coefficient is a local measure of graph density.

Small world measures capture global features of graphs.

Are there intermediate notions of graph density?

Subgraphs that represent backbones of network topology
(components, shortest paths, Chapter 6.1, 7.1, 7.2, February 15 and
17)

Cores and Modularity (Chapter 6.2, 9.1, February 22, 24, March 1)

Describe group projects (March 3).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Plan after Spring Break

Schedule meetings with project groups during class time in my office.

Number of meetings will depend on number of groups.

Poster preparation for VTURCS Symposium on April ??.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .
Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .
Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.

A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .
Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .
Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Properties of BFS

1

2 3

4 5 6

7

8

9

10

11

12

13

For each j ≥ 1, layer Lj consists of all nodes

exactly at distance j
from S .

There is a path from s to t if and only if t is a member of some layer.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Properties of BFS

1

2 3

4 5 6

7

8

9

10

11

12

13

For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S .

There is a path from s to t if and only if t is a member of some layer.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Implementing BFS

Maintain an array Discovered and set
Discovered[v] = true as soon as the algorithm sees v .

1

2 3

4 5 6

7

8

9

10

11

12

13

3 2

1

2 3

4 5 6

7

8

9

10

11

12

13

5 7 8 4

1

2 3

4 5 6

7

8

9

10

11

12

13

6

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers
in a single queue L.

We can guarantee that all nodes in layer i will be put in the queue
after every node in layer i − 1 and before every node in layer i + 1.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L?

Exactly once.
Time used by for loop for a node u: O(d(u)) time.
Total time for all for loops:

∑
u∈G O(d(u)) = O(m) time.

Total time is O(n + m).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L? Exactly once.

Time used by for loop for a node u: O(d(u)) time.
Total time for all for loops:

∑
u∈G O(d(u)) = O(m) time.

Total time is O(n + m).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L? Exactly once.
Time used by for loop for a node u:

O(d(u)) time.
Total time for all for loops:

∑
u∈G O(d(u)) = O(m) time.

Total time is O(n + m).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L? Exactly once.
Time used by for loop for a node u: O(d(u)) time.

Total time for all for loops:
∑

u∈G O(d(u)) = O(m) time.
Total time is O(n + m).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L? Exactly once.
Time used by for loop for a node u: O(d(u)) time.
Total time for all for loops:

∑
u∈G O(d(u)) = O(m) time.

Total time is O(n + m).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.

A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A weakly connected component of a directed graph G is a connected
component of the undirected graph G ′ obtained by replacing every edge in
G by an undirected edge.

We can compute all weakly connected components in linear time.
A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A weakly connected component of a directed graph G is a connected
component of the undirected graph G ′ obtained by replacing every edge in
G by an undirected edge.
We can compute all weakly connected components in linear time.

A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.
A strongly connected component of a directed graph G = (V ,E) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Largest Component in Brain Graphs

Phase transition for appearance of large component in E-R graphs.

Add edges in decreasing order of weight.
Plot the size of the largest weakly connected component.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Largest Component in Brain Graphs

Add edges in decreasing order of weight.
Plot the size of the largest weakly connected component.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Random and Targeted Attack on Brain Networks

Remove nodes randomly.

Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.

Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Random and Targeted Attack on Brain Networks

Remove nodes randomly.
Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.
Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Random and Targeted Attack on Brain Networks

Remove nodes randomly.
Targeted attack: Remove nodes in decreasing order of degree.

Pr{degree = k} ∼ k−γ ∼ k−γe−k/kc

Degree distribution of the brain is broad-scale: characterized by an
exponentially-truncated power law.
Concentration of links on hub nodes is weaker in a broad-scale
network compared to a scale-free network.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Shortest Paths Problem

G (V ,E) is a directed graph. Each edge e has a length l(e) ≥ 0.

V has n nodes and E has m edges.

Length of a path P is the sum of the lengths of the edges in P.

Goal is to determine the shortest path from a specified start node s to
each node in V .

Aside: If G is undirected, convert to a directed graph by replacing
each edge in G by two directed edges.

Shortest Paths

Given a directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V ,

compute a set {P(u), u ∈ V }, where P(u) is the shortest path in
G from s to u.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Shortest Paths Problem

G (V ,E) is a directed graph. Each edge e has a length l(e) ≥ 0.

V has n nodes and E has m edges.

Length of a path P is the sum of the lengths of the edges in P.

Goal is to determine the shortest path from a specified start node s to
each node in V .

Aside: If G is undirected, convert to a directed graph by replacing
each edge in G by two directed edges.

Shortest Paths

Given a directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V ,

compute a set {P(u), u ∈ V }, where P(u) is the shortest path in
G from s to u.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Shortest Paths Problem Instance

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

1

1

1

1

1

1

1

1

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

1

1

1

1

1

1

1

1

Unweighted graph: Use BFS. Process nodes in non-decreasing order of
distance.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Weighted graph: Edge weights are integers. Can we make the graph
unweighted?

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Add dummy nodes: Edge of weight w gets w − 1 nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Dummy nodes: BFS computes shortest paths correctly. Running time is

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

Dummy nodes: BFS computes shortest paths correctly. Running time is

O(m + n +
∑

e∈E l(e)). Pseudo-polynomial time: depends on input values.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

Like BFS: explore nodes in non-increasing order of distance from s. Once
a node is explored, its distance is fixed.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

Unlike BFS: Layers are not uniform. Which node to process next?
Candidates are nodes with an edge from a explored node.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]

For each unexplored node, determine “best” preceding explored node.

Record shortest path length only through explored nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]

For each unexplored node, determine “best” preceding explored node.

Record shortest path length only through explored nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]
[4]

For each unexplored node, determine “best” preceding explored node.

Record shortest path length only through explored nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

For each unexplored node, determine “best” preceding explored node.
Record shortest path length only through explored nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

[2]

Explore node with smallest path length only through explored nodes.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

Like BFS: Record previous node in the computed path.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Generalizing BFS to Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

[4, from e]

[3, from e]

Follow previous nodes to compute shortest path. Like BFS: these edges
form a tree.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Idea Underlying Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

Maintain a set S of explored nodes.
I For each node u ∈ S , compute a value d(u), which (we will prove) is

the length of the shortest path from s to u.
I For each node x 6∈ S , maintain a value d ′(x), which is the length of the

shortest path from s to x using only the nodes in S (and x , of course).

“Greedily” add a node v to S that has the smallest value of d ′(v) (is closest
to s using only nodes in S).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Idea Underlying Dijkstra’s Algorithm

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

Maintain a set S of explored nodes.
I For each node u ∈ S , compute a value d(u), which (we will prove) is

the length of the shortest path from s to u.
I For each node x 6∈ S , maintain a value d ′(x), which is the length of the

shortest path from s to x using only the nodes in S (and x , of course).
“Greedily” add a node v to S that has the smallest value of d ′(v) (is closest
to s using only nodes in S).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths:

when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?

I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each such edge, we compute the length of the shortest path from s

to x via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

?

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .

I Argument of min runs over all edges of the type (u, x), where u is in S
(i.e., u is explored).

I For each such edge, we compute the length of the shortest path from s
to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).

I For each such edge, we compute the length of the shortest path from s
to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[2]
[4]
[4]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each such edge, we compute the length of the shortest path from s

to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each such edge, we compute the length of the shortest path from s

to x via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .

I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.

I Return the argument (i.e., the node) that has the smallest value of
d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[]

[2]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) +

l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1, from s]

[2, from s]

[]

[2, from a]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Proof of Correctness
Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: The algorithm has correctly computed P(t) for

all nodes t ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor

on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Proof of Correctness
Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis:

The algorithm has correctly computed P(t) for
all nodes t ∈ S .

I Inductive step: we add the node v to S . Let u be the v ’s predecessor
on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Proof of Correctness
Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: The algorithm has correctly computed P(t) for

all nodes t ∈ S .

I Inductive step: we add the node v to S . Let u be the v ’s predecessor
on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Proof of Correctness
Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: The algorithm has correctly computed P(t) for

all nodes t ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor

on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Proof of Correctness
Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: The algorithm has correctly computed P(t) for

all nodes t ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor

on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

For each node x ∈ V − S , store the pair (x , d ′(x)) in a priority queue
Q with d ′(x) as the key.
Determine the next node v to add to S using ExtractMin (line 3).
After adding v to S , for each node x ∈ V − S such that there is an
edge from v to x , check if d ′(x) should be updated, i.e., if there is a
shortest path from s to x via v (lines 5–8).
In line 8, if x is not in Q, simply insert it.

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin?

n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5?

O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?

∑
v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey?

≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm?

O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v ,x) < d ′(x) then
7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin? n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Graph Measures Based on Shortest Paths

Characteristic path length l(G) is the average shortest path length
between all pairs of nodes in G . δ(u, v) = shortest path length from
u to v .

l(G) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

δ(u, v)

Global efficiency eglob(G) is the average of the reciprocal of the
shortest path length between all pairs of nodes in G .

eglob(G) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

1

δ(u, v)

Local efficiency eloc(v) of a node v is the average of the reciprocal of
the shortest path length between all pairs of neighbours of v in G .

eloc(v) =
1

d(v)(d(v)− 1)

∑
u,v∈N(v)

u 6=v

1

δ(u, v)

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Graph Measures Based on Shortest Paths

Characteristic path length l(G) is the average shortest path length
between all pairs of nodes in G . δ(u, v) = shortest path length from
u to v .

l(G) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

δ(u, v)

Global efficiency eglob(G) is the average of the reciprocal of the
shortest path length between all pairs of nodes in G .

eglob(G) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

1

δ(u, v)

Local efficiency eloc(v) of a node v is the average of the reciprocal of
the shortest path length between all pairs of neighbours of v in G .

eloc(v) =
1

d(v)(d(v)− 1)

∑
u,v∈N(v)

u 6=v

1

δ(u, v)

T. M. Murali February 15 and 17, 2022 Components and Cores

Components Shortest Paths

Efficiency in Brain Networks

Functional connectivity networks from fMRI data in young (black) and old
(orange) human volunteers.
x-axis is fraction of possible edges as threshold on edge weight varies.
y -axis is global (left) and local (right) efficiency.
Small world networks are both locally and globally efficient.

T. M. Murali February 15 and 17, 2022 Components and Cores

	Components
	Shortest Paths

