
Cliques Cores Hierarchical clustering MST Modularity

CS 4884: Modules

T. M. Murali

February 22 and 24, 2022

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Summary of Course Thus Far

Clustering coefficient is a local measure of graph density.

Small world property captures global features of graph density.

Are there intermediate notions of graph density?

We have already considered components and shortest paths.
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Why Modules?

Why should (brain) networks be modular?
Do modules exist in brain networks?

How do we define modules and find them?

Modularity and hierarchical organisation offer several advantages:
evolvability, flexibility, adaptability, and complexity (Simon, 1962).
Focal pathology affecting a tightly interconnected brain module will
be less likely to spread and affect other areas.
Breakdown of modularity can lead to a propensity for
hyper-synchronized, seizure-like dynamics.

Do E-R graphs contain modules? No, because all nodes have roughly
the same degree.

Do W-S graphs contain modules? No, although other small-world
networks can contain modules.

But the brain is indeed modular: organ, hemispheres, coarse divisions,
lobes, cytoarchitectural areas, nuclei, etc.
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Defining Modules

1

2 3

4 5 6

7

8

9

10

11

12

13

How do we define a module in an undirected graph?
In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
clique or complete subgraph if for every pair of nodes u, v ∈ C , (u, v)
is an edge in E .

I A clique C is maximal if no node outside C can be added to it, i.e., for
every node x ∈ V − C , x is not connected to at least one node in C .

I A clique C is maximum if there is no clique C ′ in G with more nodes
than C .
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Computing a Maximum Clique

1

2 3

4 5 6

7

8

9

10

11

12

13

Maximum Clique
Given an undirected, unweighted graph G (V ,E ),
compute the largest clique in G .

Computing a maximum clique is NP-hard.
Any algorithm that can provably compute the maximum clique is
likely to have a running time that is exponential in the size of the
graph.
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Computing a Maximal Clique
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Maximal Clique
Given an undirected, unweighted graph G (V ,E ),
compute a maximal clique in G .

1 Select an arbitrary node v and add it to S (the clique we will output).
2 If there is a node u in V − S that is connected to every node in S ,

add u to S .
3 Repeat the previous step until no such node u is found.
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Running Time to Compute a Maximal Clique
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1 Select an arbitrary node v and add it to S (the clique we will output).

2 If there is a node u in V − S that is connected to every node in S ,
add u to S .

O(n|S |) checks for edge existence.

3 Repeat the previous step until no such node u is found.

O(n|S |2)
checks for edge existence.
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Clique Decomposition
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What do we do after computing a maximal clique?

Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
Sequence of cliques found depends on order of processing nodes.
There is no notion of correctness here since we defined what we compute
(the clique decomposition) based on an algorithm we specified.
Will every edge in G be in some clique in the decomposition? Can a node be
in multiple cliques?

No, to both questions.
Modification: After finding a clique, delete only the edges in it.
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What do we do after computing a maximal clique?
Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
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Structural Connectivity at the Mesoscale

Parcellate the macaque cortex into 91 areas, defined according to
cytoarchitecture and sulco-gyral landmarks.
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Structural Connectivity at the Mesoscale

Use retrograde tract tracing. Determine edges coming into node representing area
of injection from “labelled” nodes representing neurons that the tracer reaches.
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Structural Connectivity at the Mesoscale

Injection is at X : w(Y ,X ) = number of neurons labelled inY
total number of labelled neurons
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Structural Connectivity at the Mesoscale

Example of connectivity matrix.
Edge weights range over six orders of magnitude.
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Cliques in Macaque Cerebral Cortex Connectome

29-node directed graph representing connectome of the cerebral cortex
of the macaque; only considering nodes with tracer injection points.
Computed all 13 maximum cliques, each of which had 10 nodes.

Union of cliques formed a dense subgraph among 17 nodes.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Cliques in Macaque Cerebral Cortex Connectome

29-node directed graph representing connectome of the cerebral cortex
of the macaque; only considering nodes with tracer injection points.
Computed all 13 maximum cliques, each of which had 10 nodes.
Union of cliques formed a dense subgraph among 17 nodes.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

k-Cores
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In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
k-core if every node u ∈ C is connected in G to at least k nodes in C .

What is largest the 1-core of G?

G itself (without any nodes of
degree zero).

Does this graph have a 4-core?
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Problems related to k-cores
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k-core Existence

Given an undirected, unweighted graph G (V ,E ) and an integer k ,

compute the k-core with the largest number of nodes in G , if it
exists.

Largest k-core

Given an undirected, unweighted graph G (V ,E ),

compute the largest value of k for which G contains a k-core.
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Algorithm for k-Core Existence
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Repeatedly delete all nodes of degree < k until

every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Correctness of k-Core Existence Algorithm

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k.

Why should the resulting graph H be a k-core?

Why should the resulting graph H be the k-core with the largest
number of nodes?

Proof by contradiction.
I Suppose there is a k-core H ′ with more nodes than H.
I Then H ∪ H ′ is also a k-core.
I Moreover, no node in H ′ will be deleted by the algorithm.

How do we implement k-core algorithm efficiently?
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Cores vs. Cliques

1
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13

A clique with k nodes is a (k − 1)-core.
Can we use the k-core algorithm to find maximum cliques?

Idea: Compute the largest value of k for which a k-core H exists. If H is a
clique, it must be the largest clique (of size k + 1) in the graph.
Flaw is that H may not be a clique, in general. The largest clique may be
disjoint from H or be a subgraph of H.
Moreover, the maximum clique may have l nodes while there may be a
k-core where k > l − 1, e.g., k = 3 and l = 3. Create such an example.
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k-Core Decomposition

Label each node by the k-core to which it belongs.
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k-Core Decomposition of Macaque Cortex

242-region macaque cortical connectome containing a 16-core.
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k-Core Decomposition of C. Elegans Connectome

Sensory neurons comprise the innermost cores based on out-degree.

Motor neurons comprise the inner-most cores based on in-degree.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

k-Core Decomposition of C. Elegans Connectome

Sensory neurons comprise the innermost cores based on out-degree.
Motor neurons comprise the inner-most cores based on in-degree.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

s-Core Decomposition of Human Connectome

Structural connectivity from diffusion tensor imaging.
Connectome is the average of 21 individuals.
Extend k-core algorithm to weighted networks.
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Modules and Clustering

Finding modules or clusters formed by a set of objects is a widely
studied problem.

Long history in mathematics, statistics, and computer science.

Module ≡ Cluster ≡ Community.
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Definition of Clustering

Given a set of n objects, find the best partition of the objects into subsets
such that each subset contains objects that are similar/close to each other.

How do we measure how similar or close two objects are?

How many subsets?

How do we compare two different partitions?
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Measuring Similarity of Objects

Assume each object specified by a list of values, e.g., x , y , z
coordinates indicating voxel position in an fMRI image.

Distance between two objects p and q is d(p, q).

Euclidean metric: d(p, q) =
√∑

i (pi − qi )2.

Manhattan metric: d(p, q) =
∑

i |pi − qi |.
Other distances: normalised dot product, K-L divergence, relative
entropy, Pearson’s correlation.

Metrics obey triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).
I Euclidean, Manhattan distances are metrics.
I Correlation, dot product are not metrics.
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Hierarchical Clustering

Attempt to recursively find sub-modules within modules.

Natural way to “zoom into” areas of interest.

Represent using a tree or dendrogram.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.

2 Repeat
I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Measuring Distance between Clusters

How do we measure distance between two clusters Ci and Cj?

dmin(Ci ,Cj) = distance between closest pair of objects.

dmax(Ci ,Cj) = distance between farthest pair of objects.

dmean(Ci ,Cj) = average of distances between all pairs of objects.

dcentroid(Ci ,Cj) = d(µi , µj), where µi is the centroid of Ci .

Methods are called minimum linkage, maximum linkage, mean
linkage, and centroid linkage clustering, respectively.

Computing dmin, dmax , davg takes O(ninj) time.

Computing dmean takes O(ni + nj) time.
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Running Time of Hierarchical Clustering

1 Start with every object in its own cluster.
2 Repeat

I Let Di and Dj be the clusters “nearest” each other.
I Merge Di and Dj .

3 until all the objects are in one cluster.

Assume computing distance between two objects takes O(1) time.

Store all O(n2) inter-object distances.

At each iteration, compute distance between every pair of clusters:
takes O(n2) time in total.

There are n iterations, so overall running time is O(nn2) = O(n3).
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Hierarchical Clustering Result
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Definition of Clustering

Given a set of n objects, find the best partition of the objects into subsets
such that each subset contains objects that are similar/close to each other.

How do we measure how similar or close two objects are?

How many subsets?

Not specified in hierarchical clustering.

How do we compare two different partitions?
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Formalising the Clustering Problem

Let U be the set of n objects labelled p1, p2, . . . , pn.
For every pair pi and pj , we have a distance d(pi , pj).
We require d(pi , pi ) = 0, d(pi , pj) > 0, if i 6= j , and
d(pi , pj) = d(pj , pi )

Given a positive integer k , a k-clustering of U is a partition of U into
k non-empty subsets or “clusters” C1,C2, . . .Ck .
The spacing of a clustering is the smallest distance between objects in
two different subsets:

spacing(C1,C2, . . .Ck) = min
1≤i ,j≤k
i 6=j ,

p∈Ci ,q∈Cj

d(p, q)

Clustering of Maximum Spacing
Given a set U of objects, a distance function d : U × U → R+,
and a positive integer k ,
compute a k-clustering of U whose spacing is the largest over all
possible k-clusterings.
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Example of Clustering of Maximum Spacing
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Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.
Let C be a set of n clusters, with each object in U in its own cluster.
Process pairs of objects in increasing order of distance.

I Let (p, q) be the next pair with p ∈ Cp and q ∈ Cq.
I If Cp 6= Cq, add new cluster Cp ∪ Cq to C, delete Cp and Cq from C.

Stop when there are k clusters in C.
Same as Kruskal’s algorithm but do not add last k − 1 edges in MST.

Skip proof
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What is the spacing of the Algorithm’s Clustering?

Let C be the clustering produced by the algorithm.
What is spacing(C)?

It is the cost of the (k − 1)st most expensive
edge in the MST. Let this cost be d∗.
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Why does the Algorithm Work?

Let C′ be any other clustering.

We will prove that spacing(C′) ≤ d∗.
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spacing(C ′) ≤ d∗: Intuition
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spacing(C ′) ≤ d∗

There must be two objects pi and pj in U in the same cluster Cr in C but in
different clusters in C′:

spacing(C′) ≤ d(pi , pj). But d(pi , pj) could be > d∗.
Suppose pi ∈ C ′s and pj ∈ C ′t in C′.
All edges in the path Q connecting pi and pj in the MST have length ≤ d∗.
In particular, there is an object p ∈ C ′s and an object p′ 6∈ C ′s such that p
and p′ are adjacent in Q.
d(p, p′) ≤ d∗ ⇒ spacing(C′) ≤ d(p, p′) ≤ d∗.
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Disadvantages of Hierarchical Clustering

To get a set of modules, at which level do we cut the dendrogram?

Optimality due to spacing argument applies only to single linkage
clustering.

We need a different definition of module quality that captures
connectivity within and across modules.
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Motivation
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Given an undirected, unweighted graph G = (V ,E ) suppose we
partition the nodes into k modules C = C1,C2, . . .Ck .

How do we measure the “quality” of C?

Intuition: many more edges within modules than among modules.
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Initial Definition of Modularity
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How do we count the number of edges within modules?

For every node u ∈ V , define c(u) as the index of u’s module.

q(C) =
1

m

∑
(u,v)∈E

δ(c(u), c(v)), where δ is the Kronecker delta function

=
1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v)), where a(u, v) = 1 iff (u, v) is an edge
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Optimising Modularity
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q(C) =
1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v))

Should we maximise or minimise q(C)? Maximise it.

What is the value of q(C) if we place all nodes in G in a single cluster? 1!
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Two Criteria for High Quality Partitions

1 Nodes are in highly cohesive modules, i.e., nodes within the same
module will be strongly connected with each other.

2 The amount of intramodule connectivity in a good partition will be
greater than expected by chance, as defined by a network in which
edges are placed between nodes at random.

3 Proposed by Newman and Girvan, 2004.
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Configuration Model
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Method to generate random graphs like Erdös-Renyi and
Watts-Strogatz models.
Ensure that the random graphs have the same degree sequence as G ,
but allow self loops and multi-edges.

q(C) =
1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model
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Cut each edge in G in half.
Each node u has d(u) stubs; total number of stubs is 2m.
For each stub select another stub uniformly at random and connect
them by an edge.

q(C) =
1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model
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What is the probability of an edge between nodes u and v?

d(u)d(v)
2m .

q(C) =
1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model
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What is the probability of an edge between nodes u and v? d(u)d(v)
2m .

Therefore modularity of the partition of a random graph in the
configuration model into the same modules C = C1,C2, . . .Ck

q(C) =
1
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∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Final Definition of Modularity
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q(C) =
1

2m

∑
u,v∈V

(
a(u, v)− d(u)d(v))

2m

)
δ(C (u),C (v))

What is the range of q(C)?

Between -1 and 1.
I q(C) > 0: C has higher intramodule connectivity than expected by

chance from configuration model.
I q(C) = 0: C has same intramodule connectivity as expected in a

random graph.
I q(C) < 0: C has no modular structure.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Final Definition of Modularity

1

2 3

4 5 6

7

8

9

10

11

12

13

q(C) =
1

2m

∑
u,v∈V

(
a(u, v)− d(u)d(v))

2m

)
δ(C (u),C (v))

What is the range of q(C)? Between -1 and 1.
I q(C) > 0: C has higher intramodule connectivity than expected by

chance from configuration model.
I q(C) = 0: C has same intramodule connectivity as expected in a

random graph.
I q(C) < 0: C has no modular structure.

T. M. Murali February 22 and 24, 2022 Modules



Cliques Cores Hierarchical clustering MST Modularity

Using Modularity

Now that we have defined a nice measure for the quality of a
partition, how do we use it?

Definition of q does not specify the number of clusters.

Hierarchical clustering: Compute modularity after every merge and
output the clustering with the largest value.

Any other clustering algorithm: compute the modularity of the result.

Develop a new algorithm to maximise modularity.
I Maximising modularity is NP-hard.
I We must rely on heuristics to make the modularity as large as possible.
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I Maximising modularity is NP-hard.
I We must rely on heuristics to make the modularity as large as possible.
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Greedy Algorithm

Proposed by Newman, 2004.

1 Start with every node in its own module.
2 While there are at least two modules

1 Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.

2 Merge this pair of modules into one.

3 Return the clustering with the largest value of q.

Hierarchical clustering algorithm built directly around maximisation of
q.

Allows q to decrease to preserve the principle of hierarchical
clustering.

Why is the algorithm “greedy”? Merging of two modules cannot be
undone.
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Louvain Algorithm: Phase 1

Proposed by Blondel et al., 2008.

1 Start with every node in its own module.

2 For every node u ∈ V and every neighbour v of u, evaluate the
change in q when we remove u from its module and add it to v ’s
module.

3 Move u to that neighbour’s module for which increase in q is largest.

4 Repeat the previous two steps until q does not increase.
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Louvain Algorithm: Phase 2
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1 Construct a new graph where every module is a node and a weighted
edge represents (multiple) connections between two modules.

2 Repeat Phases 1 and 2 until no further gains in q are possible.
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Louvain Algorithm: Efficiency
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Efficient calculation of change in q upon swapping makes this
algorithm very fast.
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Human resting-state fMRI networks, 1,800 nodes, 4mm3 voxels, had three
hierarchical levels: eight modules at the highest level, each with > 10 nodes, 57

modules at the lowest level of the hierarchy.
Meunier et al., 2009
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Visualisation of modules. View of brain is from the left side with the
frontal cortex on the left and the occipital cortex on the right.

Meunier et al., 2009
T. M. Murali February 22 and 24, 2022 Modules
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Decomposition of the five largest modules (in the centre): medial occipital
module has no major sub-modules whereas the fronto-temporal module

has many sub-modules.
Meunier et al., 2009
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Medial occipital module (primary visual): This module comprised medial
occipital cortex and occipital pole, including primary visual areas.

Meunier et al., 2009
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Fronto-temporal module (symbolic): less symmetrically organized than
most of the other high level modules and contained larger number of

sub-modules at lower levels.
Meunier et al., 2009
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Limitations of Modularity

Modularity generally increases as number of nodes and modules in a
graph increase.

Many very similar partitions have similar values of q.

Modularity has a resolution limit: small modules may be combined
simply to increase q. (Read Box 9.2 in the textbook.)

Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

Many alternatives proposed to address these limitations.
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