
Computational Tractability Asymptotic Order of Growth Common Running Times

Analysis of Algorithms

T. M. Murali

January 22, 24, 2024

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

Measure resource requirements: how does the amount of time and space an
algorithm uses scale with increasing input size?
How do we put this notion on a concrete footing?
What does it mean for one function to grow faster or slower than another?

Goal
Develop algorithms that provably run quickly and use low amounts of space.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

Measure resource requirements: how does the amount of time and space an
algorithm uses scale with increasing input size?
How do we put this notion on a concrete footing?
What does it mean for one function to grow faster or slower than another?

Goal
Develop algorithms that provably run quickly and use low amounts of space.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

We will measure worst-case running time of an algorithm.
Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

Input size = number of elements in the input. Values in the input do not
matter, except for specific algorithms.
Assume all elementary operations take unit time: assignment, arithmetic on a
fixed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

We will measure worst-case running time of an algorithm.
Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.
Input size = number of elements in the input.

Values in the input do not
matter, except for specific algorithms.
Assume all elementary operations take unit time: assignment, arithmetic on a
fixed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

We will measure worst-case running time of an algorithm.
Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.
Input size = number of elements in the input. Values in the input do not
matter, except for specific algorithms.
Assume all elementary operations take unit time: assignment, arithmetic on a
fixed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.

What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.

▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time
Brute force algorithm: Check every possible solution.
What is a brute force algorithm for sorting?

Given n numbers, permute them so that they appear in increasing order.

▶ Try all possible n! permutations of the numbers.
▶ For each permutation, check if it is sorted.
▶ Running time is n × n!. Unacceptable in practice!

Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c . Lecture 2: Analysis: Scaling

An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Mathematical Functions

Assume all (mathematical) functions take only positive arguments and values.
Different algorithms for the same problem may have different (worst-case)
running times.
Example of sorting:

bubble sort, insertion sort, quick sort, merge sort, etc.
Bubble sort and insertion sort take roughly n2 comparisons while quick sort
(only on average) and merge sort take roughly n log2 n comparisons.

▶ “Roughly” hides potentially large constants, e.g., running time of merge sort
may in reality be 10n log2 n.

How can make statements such as the following, in order to compare the
running times of different algorithms?

▶ 100n log2 n ≤ n2

▶ 10000n ≤ n2

▶ 5n2 − 4n ≥ 1000n log n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Mathematical Functions

Assume all (mathematical) functions take only positive arguments and values.
Different algorithms for the same problem may have different (worst-case)
running times.
Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

Bubble sort and insertion sort take roughly n2 comparisons while quick sort
(only on average) and merge sort take roughly n log2 n comparisons.

▶ “Roughly” hides potentially large constants, e.g., running time of merge sort
may in reality be 10n log2 n.

How can make statements such as the following, in order to compare the
running times of different algorithms?

▶ 100n log2 n ≤ n2

▶ 10000n ≤ n2

▶ 5n2 − 4n ≥ 1000n log n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Mathematical Functions

Assume all (mathematical) functions take only positive arguments and values.
Different algorithms for the same problem may have different (worst-case)
running times.
Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
Bubble sort and insertion sort take roughly n2 comparisons while quick sort
(only on average) and merge sort take roughly n log2 n comparisons.

▶ “Roughly” hides potentially large constants, e.g., running time of merge sort
may in reality be 10n log2 n.

How can make statements such as the following, in order to compare the
running times of different algorithms?

▶ 100n log2 n ≤ n2

▶ 10000n ≤ n2

▶ 5n2 − 4n ≥ 1000n log n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Mathematical Functions

Assume all (mathematical) functions take only positive arguments and values.
Different algorithms for the same problem may have different (worst-case)
running times.
Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
Bubble sort and insertion sort take roughly n2 comparisons while quick sort
(only on average) and merge sort take roughly n log2 n comparisons.

▶ “Roughly” hides potentially large constants, e.g., running time of merge sort
may in reality be 10n log2 n.

How can make statements such as the following, in order to compare the
running times of different algorithms?

▶ 100n log2 n ≤ n2

▶ 10000n ≤ n2

▶ 5n2 − 4n ≥ 1000n log n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

“10000n ≤ n2”

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

·107

n

10000n vs. n2

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

“10000n ≤ n2”

0 0.5 1 1.5 2
·104

0

1

2

3

4

·108

n

10000n vs. O(n2)

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

Definition
Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist
constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, f (n) ≤

c

g(n).

0 0.5 1 1.5 2
·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

Definition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exists
constant

s

c > 0

and n0 ≥ 0

such that for all n

≥ n0

, f (n) ≤ c g(n).

0 0.5 1 1.5 2
·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

Definition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist
constants c > 0 and n0 ≥ 0 such that for all n ≥ n0 , f (n) ≤ c g(n).

0 0.5 1 1.5 2
·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

Definition
Asymptotic upper bound: A function f (n) is O(g(n)) if there exist
constants c > 0 and n0 ≥ 0 such that for all n ≥ n0 , f (n) ≤ c g(n).

0 0.5 1 1.5 2
·104

0

1

2

3

4

·108

n

10000n is O(n2), c = 1, n0 = 10000

10000n
n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n2

Lecture 2: Analysis: Upper bound

0 500 1,000 1,500 2,000

0

1

2

3

4

·106

n

100n log2 n is O(n2),

c = 1, n0 = 1500

100n log2 n

n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n2

Lecture 2: Analysis: Upper bound

0 500 1,000 1,500 2,000

0

1

2

3

4

·106

n

100n log2 n is O(n2), c = 1, n0 = 1500

100n log2 n

n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n2

Lecture 2: Analysis: Upper bound

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

·106

n

100n log2 n is O(n2), c = 100, n0 = 1

100n log2 n

100n2

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if

there exist constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, we have f (n) ≥

c

g(n).

Lecture 2: Analysis: Lower bound

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exists constant

s

c > 0

and n0 ≥ 0

such that for all n

≥ n0

, we have f (n) ≥ cg(n).

Lecture 2: Analysis: Lower bound

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

Lecture 2: Analysis: Lower bound

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

Lecture 2: Analysis: Lower bound

0 20 40 60 80 100

0

20

40

60

80

100

n

(n log2 n)/10 and Ω(n)

n log n/10
n

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

Lecture 2: Analysis: Lower bound

0 20 40 60 80 100

0

20

40

60

n

n log2 n/10 and Ω(n), c = 1/10, n0 = 2

n log n/10
n/10

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound
Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

Lecture 2: Analysis: Lower bound

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log2 n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions:

n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n).

This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.

Algorithms:
▶ The lower bound on the running time of bubble sort is Ω(n2). There is some

input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2).

There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g.,

input the numbers in decreasing order.
▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n).

For any
comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2).

For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of “Lower Bound” in Different Contexts

Mathematical functions: n is a lower bound for n log n/10, i.e.,
n log n/10 = Ω(n). This statement is purely about these two functions. Not
in the context of any algorithm or problem.
Algorithms:

▶ The lower bound on the running time of bubble sort is Ω(n2). There is some
input of n numbers that will cause bubble sort to take at least Ω(n2) time,
e.g., input the numbers in decreasing order.

▶ But there may be other, faster algorithms for sorting.

Problems:
▶ The problem of sorting n numbers has a lower bound of Ω(n log n). For any

comparison-based sorting algorithm, there is at least one input for which that
algorithm will take Ω(n log n) steps.

▶ The stable matching problem has a lower bound of Ω(n2). For any algorithm,
there is at least one input for which the algorithm will take Ω(n2) steps, even
if all the preference matrices are already stored in memory (Ng and
Hirschberg, SIAM J. Comput., 1990).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Tight Bound

Definition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

In all these definitions, c and n0 are constants independent of n.
Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Tight Bound

Definition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

In all these definitions, c and n0 are constants independent of n.
Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.

If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k ,

then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk =

O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g =

Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Dropping argument n on this slide for visual clarity.
Transitivity If f = O(g) and g = O(h), then f = O(h).

If f = Ω(g) and g = Ω(h), then f = Ω(h).
If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity If f = O(h) and g = O(h), then f + g = O(h).
Similar statements hold for lower and tight bounds.
If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k , then

f1 + f2 + . . .+ fk = O(h).

If f = O(g), then f + g = Θ(g).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r

Θ(n2)

pn2 + qn + r

O(n3)? n2 ≤ n3, if n ≥ 1

∑
0≤i≤d ain

i

Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59)

Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r

O(n3)? n2 ≤ n3, if n ≥ 1

∑
0≤i≤d ain

i

Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59)

Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)?

n2 ≤ n3, if n ≥ 1

∑
0≤i≤d ain

i

Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59)

Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i

Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59)

Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59)

Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.

For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time?

Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.

For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n

O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.

For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n O(logb n)

Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.

For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.

For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.

For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3)? n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd) if d > 0 is an integer constant and ad > 0

O(n1.59) Polynomial time? Yes, since n1.59 is O(n2)

Lecture 2: Analysis: Poly time

loga n O(logb n) Yes, for any pair of constants a, b > 1

Lecture 2: Analysis: logs

O(nd) is the definition of polynomial time.
For every constant x > 0, log n = O(nx), e.g., log n = n0.00001.
For every constant r > 1 and every constant d > 0, nd = O(rn), e.g.,
n3 = O(1.1n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

Different functions of n

n
n log n

n2

n3

2n

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

0 10 20 30 40

0

10

20

30

40

n

More functions of n

n
log2 n
log3 n

n0.5

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Running time is at most a constant factor times the size of the input.
Lecture 2: Analysis: Linear time

Finding the minimum, merging two sorted lists.
Computing the median (or kth smallest) element in an unsorted list.
“Median-of-medians” algorithm.
Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Running time is at most a constant factor times the size of the input.
Lecture 2: Analysis: Linear time

Finding the minimum, merging two sorted lists.

Computing the median (or kth smallest) element in an unsorted list.
“Median-of-medians” algorithm.
Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Running time is at most a constant factor times the size of the input.
Lecture 2: Analysis: Linear time

Finding the minimum, merging two sorted lists.
Computing the median (or kth smallest) element in an unsorted list.

“Median-of-medians” algorithm.
Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Running time is at most a constant factor times the size of the input.
Lecture 2: Analysis: Linear time

Finding the minimum, merging two sorted lists.
Computing the median (or kth smallest) element in an unsorted list.
“Median-of-medians” algorithm.
Sub-linear time.

Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Running time is at most a constant factor times the size of the input.
Lecture 2: Analysis: Linear time

Finding the minimum, merging two sorted lists.
Computing the median (or kth smallest) element in an unsorted list.
“Median-of-medians” algorithm.
Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(n log n) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Any algorithm where the costliest step is sorting.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Enumerate all pairs of elements.

Given a set of n points in the plane, find the pair that are the closest.
Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Enumerate all pairs of elements.
Given a set of n points in the plane, find the pair that are the closest.

Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n

Enumerate all pairs of elements.
Given a set of n points in the plane, find the pair that are the closest.
Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.

Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge?

How do we find such a clique?

Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is

O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge?

How do we find such a clique?
Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge?

How do we find such a clique?
Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge?

How do we find such a clique?
Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge? How do we find such a clique?

Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge? How do we find such a clique?
Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

COVID-19 proximity graph: each node is a person shopping in Kroger, an edge
connects two people who came within six feet of each other.
Some subgraphs can have high potential for virus transmission.
Does a graph have a clique of size k, where k is a constant, i.e. there are k nodes
such that every pair is connected by an edge? How do we find such a clique?
Algorithm: For each subset S of k nodes, check if S is a clique. If the answer is yes,
report it. Lecture 2: Analysis: Number of subsets

Running time is O(k2(n
k

)
) = O(nk).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

What is the largest size of a clique in a graph with n nodes?

Algorithm: For each 1 ≤ i ≤ n, check if the graph has a clique of size i .
Output largest clique found.
What is the running time? O(n22n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

What is the largest size of a clique in a graph with n nodes?
Algorithm: For each 1 ≤ i ≤ n, check if the graph has a clique of size i .
Output largest clique found.

What is the running time? O(n22n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

What is the largest size of a clique in a graph with n nodes?
Algorithm: For each 1 ≤ i ≤ n, check if the graph has a clique of size i .
Output largest clique found.
What is the running time?

O(n22n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

n
n log n

n2

n3

2n
1

2 3

4 5 6

7

8

9

10

11

12

13

What is the largest size of a clique in a graph with n nodes?
Algorithm: For each 1 ≤ i ≤ n, check if the graph has a clique of size i .
Output largest clique found.
What is the running time? O(n22n).

T. M. Murali January 22, 24, 2024 Analysis of Algorithms


	Computational Tractability
	Asymptotic Order of Growth
	Common Running Times

