Divide and Conquer Algorithms

T. M. Murali

March 11, 13, 2024

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - ▶ Partition problem into two equal sub-problems of size n/2.
 - Solve each part recursively.
 - Combine the two solutions in O(n) time.
 - Resulting running time is O(n log n).

Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \dots, x_n$ of integers.

SOLUTION: A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \leq y_{i+1}$, for all $1 \leq i < n$.

- Mergesort is a divide-and-conquer algorithm for sorting.
 - **1** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
 - 2 Recursively sort A.
 - Recursively sort B.
 - Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \dots, a_k$ and $B = b_1, b_2, \dots b_l$.

Maintain a *current* pointer for each list.

Initialise each pointer to the front of the list.

While both lists are nonempty:

Let a_i and b_i be the elements pointed to by the *current* pointers.

Append the smaller of the two to the output list.

Advance the current pointer in the list that the smaller element belonged to.

FndWhile

Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \dots, a_k$ and $B = b_1, b_2, \dots b_l$.

Maintain a *current* pointer for each list.

Initialise each pointer to the front of the list.

While both lists are nonempty:

Let a_i and b_i be the elements pointed to by the *current* pointers.

Append the smaller of the two to the output list.

Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

• Running time of this algorithm is O(k+1).

- **Q** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort B.
- ullet Merge the sorted lists A and B into a single sorted list.

=

Analysing Mergesort

- Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Running time for L

Running time for A +

Running time for B +

Time to split the input into two lists +

Time to merge two sorted lists.

- **Q** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort B.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements =

Running time for A +

Running time for B $+\,$

Time to split the input into two lists +

Time to merge two sorted lists.

- Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements <

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists +

Time to merge two sorted lists.

- **1** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements <

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists +

Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv Worst$ -case running time for n elements, for every $n \geq 1$.

March 11, 13, 2024 Divide and Conquer Algorithms

- **1** Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort *B*.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements <

Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists +

Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv Worst$ -case running time for n elements, for every $n \geq 1$.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

$$T(2) \leq c$$

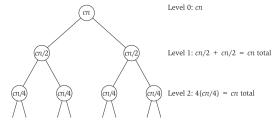
- Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- Recursively sort A.
- Recursively sort B.
- Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq

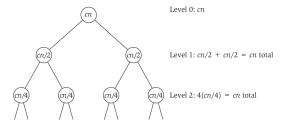
Worst-case running time for $\lfloor n/2 \rfloor$ elements +

Worst-case running time for $\lceil n/2 \rceil$ elements +

Time to split the input into two lists +


Time to merge two sorted lists.

- Assume *n* is a power of 2.
- Define $T(n) \equiv Worst$ -case running time for n elements, for every $n \geq 1$.


$$T(n) \leq 2T(n/2) + cn, n > 2$$

$$T(2) \leq c$$

- Three basic ways of solving this recurrence relation:
 - "Unroll" the recurrence (somewhat informal method).
 - Quess a solution and substitute into recurrence to check.
 - Guess solution in O() form and substitute into recurrence to determine the constants. Read from the textbook.

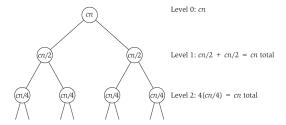

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Lectures 13-14: Divide and Conquer Algorithms: Mergesort Recurrence

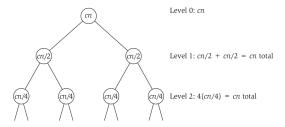
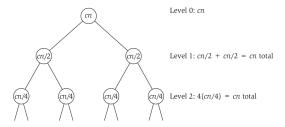

- Input to each sub-problem on level i has size
- Recursion tree has levels.
- Number of sub-problems on level *i* has size

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Lastures 12.14: Divide and Conquer Algerithms: Margasort Resurrence

- Input to each sub-problem on level i has size $n/2^i$.
- Recursion tree has log n levels.
- Number of sub-problems on level i has size 2i.

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.


▶ Lectures 13-14: Divide and Conquer Algorithms: Mergesort Recurrence 1

- Input to each sub-problem on level i has size $n/2^i$.
- Recursion tree has log n levels.
- Number of sub-problems on level i has size 2^i .

▶ Lectures 13-14: Divide and Conquer Algorithms: Recurrence 2

- Total work done at each level is
- Running time of the algorithm is

T. M. Murali Divide and Conquer Algorithms

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Lectures 13-14: Divide and Conquer Algorithms: Mergesort Recurrence 1

- Input to each sub-problem on level i has size $n/2^i$.
- Recursion tree has log n levels.
- Number of sub-problems on level i has size 2ⁱ.

▶ Lectures 13-14: Divide and Conquer Algorithms: Recurrence 2

- Total work done at each level is cn.
- Running time of the algorithm is *cn* log *n*.
- Use this method only to get an idea of the solution.

T. M. Murali Divide and Conquer Algorithms

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
 - Use induction to check if the solution satisfies the recurrence relation.

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes. Inductive hypothesis: ??

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes. Inductive hypothesis: ??

• Inductive step: Prove $T(n) \le cn \log n$.

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes. Inductive hypothesis: ??

- Inductive step: Prove $T(n) \le cn \log n$.
 - $T(n) \le 2T(\frac{n}{2}) + cn$, from the recurrence itself

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes. Inductive hypothesis: Must include n/2.

• Inductive step: Prove $T(n) \le cn \log n$. $T(n) \le 2T(\frac{n}{2}) + cn$, from the recurrence itself

- Guess that the solution is $T(n) < cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include n/2. Assume $T(m) \le cm \log_2 m$, for all m < n. Therefore,

$$T\left(\frac{n}{2}\right) \leq \frac{cn}{2}\log\left(\frac{n}{2}\right).$$

• Inductive step: Prove $T(n) \le cn \log n$.

$$T(n) \le 2T(\frac{n}{2}) + cn$$
, from the recurrence itself

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include n/2. Assume $T(m) \le cm \log_2 m$, for all m < n. Therefore,

$$T\left(\frac{n}{2}\right) \leq \frac{cn}{2}\log\left(\frac{n}{2}\right).$$

• Inductive step: Prove $T(n) \le cn \log n$.

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
, from the recurrence itself
 $\le 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn$, by the inductive hypothesis
 $= cn\log\left(\frac{n}{2}\right) + cn$
 $= cn\log n - cn + cn$
 $= cn\log n$.

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include n/2. Assume $T(m) \le cm \log_2 m$, for all m < n. Therefore,

$$T\left(\frac{n}{2}\right) \leq \frac{cn}{2}\log\left(\frac{n}{2}\right).$$

• Inductive step: Prove $T(n) \le cn \log n$.

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
, from the recurrence itself
 $\le 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn$, by the inductive hypothesis
 $= cn\log\left(\frac{n}{2}\right) + cn$
 $= cn\log n - cn + cn$
 $= cn\log n$.

• Why is $T(n) \le kn^2$ a "loose" bound?

- Guess that the solution is $T(n) \le cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- Strong Inductive hypothesis: Must include n/2. Assume $T(m) \le cm \log_2 m$, for all m < n. Therefore,

$$T\left(\frac{n}{2}\right) \leq \frac{cn}{2}\log\left(\frac{n}{2}\right).$$

• Inductive step: Prove $T(n) \le cn \log n$.

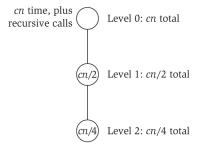
$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
, from the recurrence itself
 $\le 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn$, by the inductive hypothesis
 $= cn\log\left(\frac{n}{2}\right) + cn$
 $= cn\log n - cn + cn$
 $= cn\log n$.

- Why is $T(n) \le kn^2$ a "loose" bound?
- Why doesn't an attempt to prove $T(n) \le kn$, for some k > 0 work?

Proof for All Values of *n*

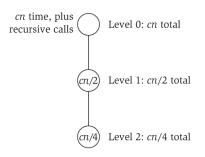
- We assumed n is a power of 2.
- How do we generalise the proof?

Proof for All Values of n


- We assumed *n* is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \le T(n+1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$

Proof for All Values of n

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n+1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \le T(m) = O(m \log m) = O(n \log n)$, because $m \le 2n$.


- Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct cases: q = 1 and q > 2.
- Divide into two sub-problems of size n/2 and merge in $O(n^2)$ time.

$$T(n) = qT(n/2) + cn, q = 1$$

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

$$T(n) = qT(n/2) + cn, q = 1$$

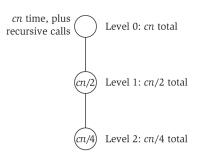


Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

- Each invocation reduces the problem size by a factor of $2 \Rightarrow$ there are $\log n$ levels in the recursion tree.
- At level i of the tree, the problem size is $n/2^i$ and the work done is $cn/2^i$.
- Therefore, the total work done is

$$\sum_{i=0}^{i=\log n} \frac{cn}{2^i} =$$
 Lectures 13-14: Divide and Conquer Algorithms: Geometric series).

$$T(n) = qT(n/2) + cn, q = 1$$

Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

- Each invocation reduces the problem size by a factor of $2 \Rightarrow$ there are $\log n$ levels in the recursion tree.
- At level i of the tree, the problem size is $n/2^i$ and the work done is $cn/2^i$.
- Therefore, the total work done is

$$\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).$$

$$T(n) = qT(n/2) + cn, q > 2$$

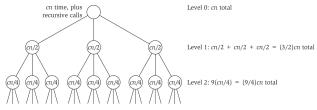
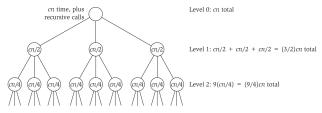



Figure 5.2 Unrolling the recurrence T(n) < 3T(n/2) + O(n).

$$T(n) = qT(n/2) + cn, q > 2$$

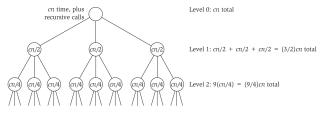


Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log *n* levels in the recursion tree.
- At level i of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level i is $q^i cn/2^i$. Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq$$

$$T(n) = qT(n/2) + cn, q > 2$$

Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log *n* levels in the recursion tree.
- At level i of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level i is $q^i cn/2^i$. Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq cn \sum_{i=0}^{i=\log_2 n} \left(\frac{q}{2}\right)^i$$

$$= O\left(cn \left(\frac{q}{2}\right)^{\log_2 n}\right) = O\left(cn \left(\frac{q}{2}\right)^{(\log_{q/2} n)(\log_2 q/2)}\right)$$

$$= O(cn n^{\log_2 q/2}) = O(n^{\log_2 q}).$$

$$T(n) = 2T(n/2) + cn^2$$

• Total work done is

$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \le$$

$$T(n) = 2T(n/2) + cn^2$$

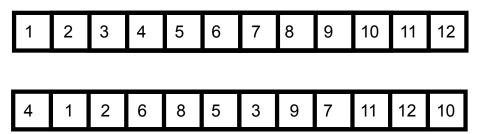
• Total work done is

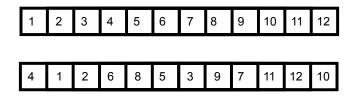
$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \leq O(n^2).$$

Motivation

Inspired by your shopping trends

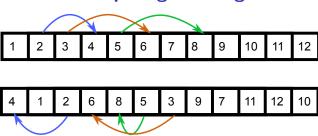
More top picks for you




- Collaborative filtering: match one user's preferences to those of other users, e.g., purchases, books, music.
- Meta-search engines: merge results of multiple search engines into a better search result.

Fundamental Question

- How do we compare a pair of rankings?
 - ▶ My ranking of songs: ordered list of integers from 1 to *n*.
 - Your ranking of songs: a_1, a_2, \ldots, a_n , a permutation of the integers from 1 to n.



Comparing Rankings

• Suggestion: two rankings of songs are very similar if they have few inversions.

Comparing Rankings

- Suggestion: two rankings of songs are very similar if they have few inversions.
 - ▶ The second ranking has an *inversion* if there exist i, j such that i < j but $a_i > a_j$.
 - ► The number of inversions s is a measure of the difference between the rankings.
- Question also arises in statistics: *Kendall's rank correlation* of two lists of numbers is 1 2s/(n(n-1)).

Counting Inversions

Count Inversions

INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i,j), 1 \le i < j \le n$ such $x_i > x_j$.

Counting Inversions

Count Inversions

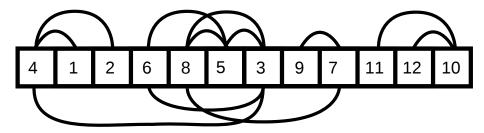
INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i,j), 1 \le i < j \le n$ such $x_i > x_j$.

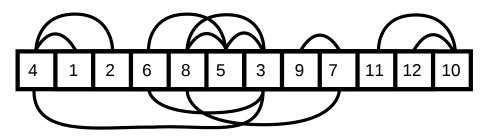
4 1 2 6 8 5 3 9 7 11 12 10

Counting Inversions

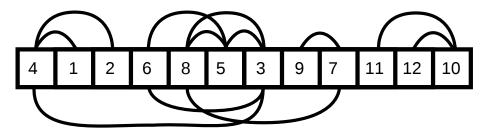
COUNT INVERSIONS

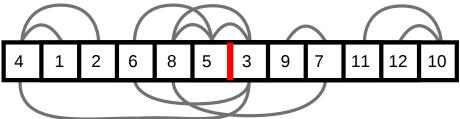

INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

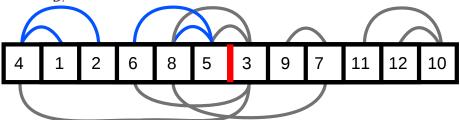
SOLUTION: The number of pairs $(i,j), 1 \le i < j \le n$ such $x_i > x_j$.

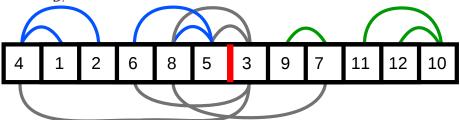


• How many inversions can be there in a list of *n* numbers?

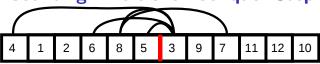

Lectures 13-14: Divide and Conquer Algorithms: Counting Inversions: Number of inversions


• How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.


- How many inversions can be there in a list of *n* numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?

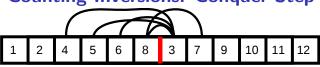

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1 Partition L into two lists A and B of size n/2 each.
 - 2 Recursively count the number of inversions in A.
 - 3 Recursively count the number of inversions in B.
 - Count the number of inversions involving one element in A and one element in В.

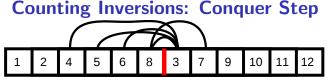

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1 Partition L into two lists A and B of size n/2 each.
 - 2 Recursively count the number of inversions in A.
 - 3 Recursively count the number of inversions in B.
 - Count the number of inversions involving one element in A and one element in В.

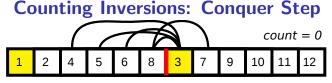


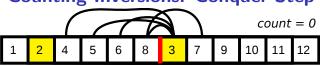
- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - Partition L into two lists A and B of size n/2 each.
 - 2 Recursively count the number of inversions in A.
 - 3 Recursively count the number of inversions in *B*.
 - Count the number of inversions involving one element in A and one element in B.

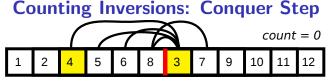
- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1 Partition L into two lists A and B of size n/2 each.
 - 2 Recursively count the number of inversions in A.
 - 3 Recursively count the number of inversions in B.
 - Count the number of inversions involving one element in A and one element in В.

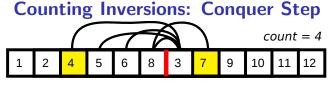

• Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

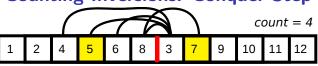

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!

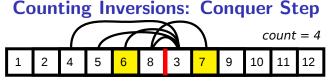

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge procedure:
 - Maintain a current pointer for each list.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return the merged list.

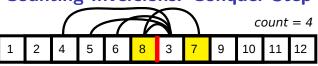

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 3 Do something clever in O(1) time.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.

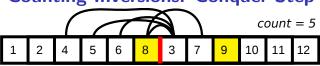

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 3 Do something clever in O(1) time.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

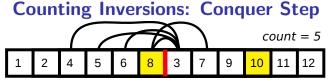

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 3 Do something clever in O(1) time.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).


- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 3 Do something clever in O(1) time.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

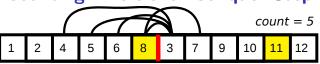

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- MERGE-AND-COUNT procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 3 If $b_j < a_i$, Lectures 13-14: Divide and Conquer Algorithms: Counting Inversions: Conquer step
 - Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).


- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

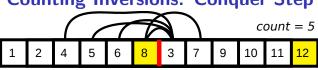

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - 2 Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).


- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - \bullet Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).



- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

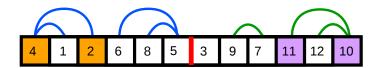


- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

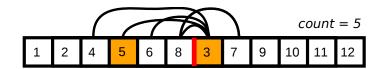
- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:
 - Maintain a current pointer for each list.
 - Maintain a variable count initialised to 0.
 - Initialise each pointer to the front of the list.
 - While both lists are nonempty:
 - 1 Let a_i and b_i be the elements pointed to by the *current* pointers.
 - Append the smaller of the two to the output list.
 - 1 If $b_i < a_i$, increment count by the number of elements remaining in A.
 - 4 Advance current in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - Return count and the merged list.
- Running time of this algorithm is O(m).

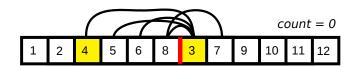
```
Sort-and-Count(L)
  If the list has one element then
      there are no inversions
  Else
      Divide the list into two halves:
         A contains the first \lceil n/2 \rceil elements
         B contains the remaining |n/2| elements
      (r_A, A) = Sort-and-Count(A)
      (r_B, B) = Sort-and-Count(B)
      (r, L) = Merge-and-Count(A, B)
   Endif
   Return r = r_A + r_B + r, and the sorted list L
```

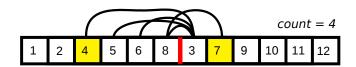

```
Sort-and-Count(L)
  If the list has one element then
      there are no inversions
  Else
      Divide the list into two halves:
         A contains the first \lceil n/2 \rceil elements
         B contains the remaining |n/2| elements
      (r_A, A) = Sort-and-Count(A)
      (r_B, B) = Sort-and-Count(B)
      (r, L) = Merge-and-Count(A, B)
   Endif
   Return r = r_A + r_B + r, and the sorted list L
```

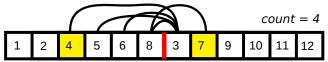
• Running time T(n) of the algorithm is $O(n \log n)$ because T(n) < 2T(n/2) + O(n).


 Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n=1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and I such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \le |n/2|$:
 - ▶ $k, l > \lceil n/2 \rceil$:
 - $k \le \lfloor n/2 \rfloor, l \ge \lceil n/2 \rceil$:


- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n=1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and I such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l < \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A , by the inductive hypothesis.
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B , by the inductive hypothesis.
 - $k < \lfloor n/2 \rfloor, l > \lceil n/2 \rceil$:


- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n=1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and I such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l < \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A , by the inductive hypothesis.
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B , by the inductive hypothesis.
 - $k < \lfloor n/2 \rfloor, l > \lfloor n/2 \rfloor$: $x_k \in A, x_l \in B$. Is this inversion counted by MERGE-AND-COUNT?


- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n=1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and I such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l < \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A , by the inductive hypothesis.
 - $k, l > \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B , by the inductive hypothesis.
 - $k \le \lfloor n/2 \rfloor, l \ge \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_i is output.

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n = 1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \le \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A , by the inductive hypothesis.
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B , by the inductive hypothesis.
 - ▶ $k \le \lfloor n/2 \rfloor$, $l \ge \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_l is output.

- Prove by induction. Strategy: (a) every inversion in the data is counted exactly once and (b) No non-inversion is counted.
- Base case: n = 1.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Consider an arbitrary inversion, i.e., any pair k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \le \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A , by the inductive hypothesis.
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B , by the inductive hypothesis.
 - ▶ $k \le \lfloor n/2 \rfloor$, $l \ge \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_l is output.
 - ▶ Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion? When x_l is output, it is smaller than all remaining elements in A, since A is sorted.

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

Multiply Integers

INSTANCE: Two *n*-digit binary integers x and y

SOLUTION: The product *xy*

• Multiply two *n*-digit integers.

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product *xy*

- Multiply two n-digit integers.
- Result has at most 2n digits.

Multiply Integers

INSTANCE: Two *n*-digit binary integers *x* and *y*

SOLUTION: The product *xy*

- Multiply two *n*-digit integers.
- Result has at most 2n digits.
- Algorithm we learnt in school takes

	1100
	× 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Integer Multiplication

Multiply Integers

INSTANCE: Two *n*-digit binary integers x and y

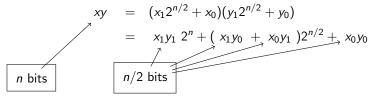
SOLUTION: The product *xy*

- Multiply two *n*-digit integers.
- Result has at most 2n digits.
- Algorithm we learnt in school takes $O(n^2)$ operations. Size of the input is not 2 but 2*n*,

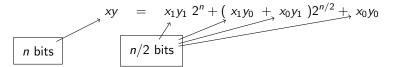
	1100
	× 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

• Let us use divide and conquer

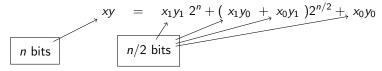

- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

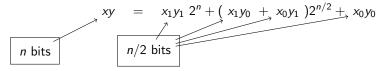
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

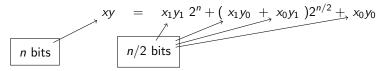

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

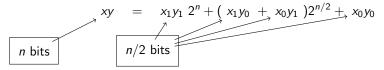
=

Integer Multiplication


- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).


Integer Multiplication


Integer Multiplication


- Algorithm:
 - ① Compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively.
 - Merge the answers, i.e,..
 - Multiple x_1y_1 by 2^n
 - 2 Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - 3 Add these two numbers to x_0y_0


- Algorithm:
 - ① Compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively.
 - Merge the answers, i.e,..
 - Multiple x_1y_1 by 2^n
 - ② Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - 3 Add these two numbers to x_0y_0
- What is the running time of the conquer step?

- Algorithm:
 - ① Compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively.
 - Merge the answers, i.e,..
 - ① Multiple $x_1 y_1$ by 2^n
 - ② Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - 3 Add these two numbers to $x_0 v_0$
- What is the running time of the conquer step?
 - ▶ Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can add their products in O(n) time.

- Algorithm:
 - ① Compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively.
 - Merge the answers, i.e,..
 - ① Multiple $x_1 y_1$ by 2^n
 - ② Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - 3 Add these two numbers to $x_0 v_0$
- What is the running time of the conquer step?
 - ▶ Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can add their products in O(n) time.
- What is the running time T(n)?

- Algorithm:
 - ① Compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively.
 - Merge the answers, i.e,..
 - ① Multiple $x_1 y_1$ by 2^n
 - 2 Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - 3 Add these two numbers to $x_0 v_0$
- What is the running time of the conquer step?
 - ▶ Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can add their products in O(n) time.
- What is the running time T(n)?

$$T(n) \leq 4T(n/2) + cn \leq O(n^2)$$

Improving the Algorithm

- \bullet Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?

Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - No need to compute x_1y_0 and x_0y_1 independently; we just need their sum.

$$(x_0 + x_1)(y_0 + y_1) = x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0$$

$$(x_1y_0 + x_0y_1) = (x_0 + x_1)(y_0 + y_1) - x_1y_1 - x_0y_0$$
Need this sum

- Compute x_1y_1 , x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
- Strategy: simple arithmetic manipulations.

Final Algorithm

```
Recursive-Multiply(x,y):
   Write x = x_1 \cdot 2^{n/2} + x_0
           y = y_1 \cdot 2^{n/2} + y_0
   Compute x_1 + x_0 and y_1 + y_0
   p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)
   x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)
   x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)
   Return x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0
```

Final Algorithm

```
Recursive-Multiply(x,y):

Write x = x_1 \cdot 2^{n/2} + x_0
y = y_1 \cdot 2^{n/2} + y_0

Compute x_1 + x_0 and y_1 + y_0
p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)
x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)
x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)
Return x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0
```

- We have three sub-problems of size n/2.
- What is the running time T(n)?

$$T(n) \leq 3T(n/2) + cn$$

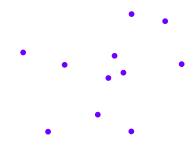
Final Algorithm

```
Recursive-Multiply(x,y):

Write x = x_1 \cdot 2^{n/2} + x_0
y = y_1 \cdot 2^{n/2} + y_0

Compute x_1 + x_0 and y_1 + y_0
p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)
x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)
x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)
Return x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0
```

- We have three sub-problems of size n/2.
- What is the running time T(n)?


$$T(n) \le 3T(n/2) + cn$$

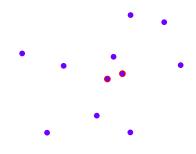
 $\le O(n^{\log_2 3}) = O(n^{1.59})$

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, Idots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

ergesort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair of Points on the Plane


CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

rgesort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair of Points on the Plane

CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

Closest Pair of Points on the Plane

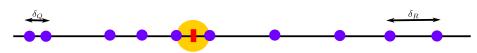
CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

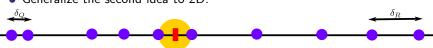
- At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.


- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_i)$ to denote the Euclidean distance between p_i and p_i . For a specific pair of points, can compute $d(p_i, p_i)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?

- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_i)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.

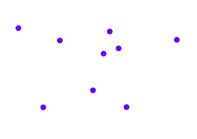
- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_i)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - ▶ Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - closest pair in left half: distance δ_Q .
 - 2 closest pair in right half: distance δ_R .
 - **3** closest among pairs that span the left and right halves and are at most $\min(\delta_O, \delta_R)$ apart. How many such pairs do we need to consider?



- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - closest pair in left half: distance δ_Q .
 - 2 closest pair in right half: distance δ_R .
 - ② closest among pairs that span the left and right halves and are at most $\min(\delta_Q, \delta_R)$ apart. How many such pairs do we need to consider? Just one!

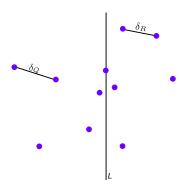
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \dots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_i)$ in O(1) time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - ▶ Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - closest pair in left half: distance δ_Q .
 - 2 closest pair in right half: distance δ_R .
 - **3** closest among pairs that span the left and right halves and are at most $\min(\delta_Q, \delta_R)$ apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.

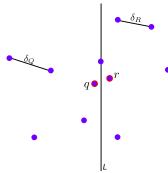


ergesort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

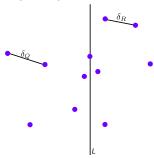
Closest Pair: Algorithm Skeleton


① Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.

 $oldsymbol{Q}$ Recursively compute closest pair in Q and in R, respectively.

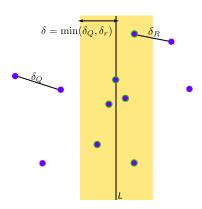

Closest Pair: Algorithm Skeleton

- ① Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- Recursively compute closest pair in Q and in R, respectively.
- **1** Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.

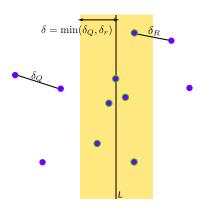

Closest Pair: Algorithm Skeleton

- ① Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- $oldsymbol{Q}$ Recursively compute closest pair in Q and in R, respectively.
- **9** Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
- Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and d(q, r) is the smallest possible.

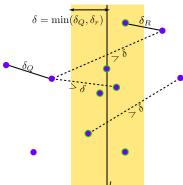
Closest Pair: Proof Sketch


- Prove by induction: Let (s, t) be the closest pair.
 - **(a)** both are in *Q*: computed correctly by recursive call.
 - both are in R: computed correctly by recursive call.
 - one is in Q and the other is in R: computed correctly in O(n) time by the procedure we will discuss.
- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.
- Overall running time is $O(n \log n)$.

Closest Pair: Conquer Step


- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_{R}$.)

▶ Lectures 13-14: Divide and Conquer Algorithms: Closest pair of points: Yellow are

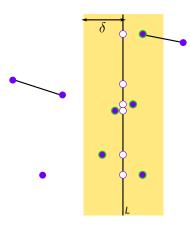

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta=\delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q,r) < \delta$ if and only if $q,r \in S$.

Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q,r) < \delta$ if and only if $q,r \in S$.
- Corollary: If $t \in Q S$ or $u \in R S$, then (t, u) cannot be the closest pair.

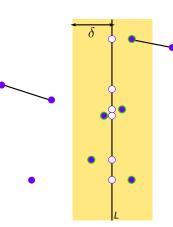
rgesort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points


Closest Pair: Packing Argument

• Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

esort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

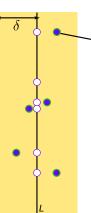
Closest Pair: Packing Argument


- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument

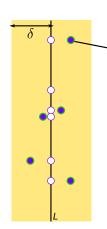
- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_v .

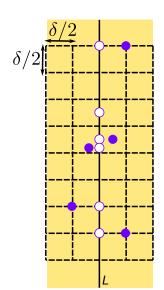


Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument

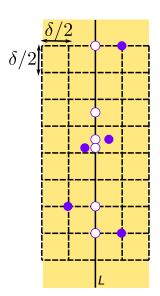
- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_v .
- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_v s_y \ge \delta$.



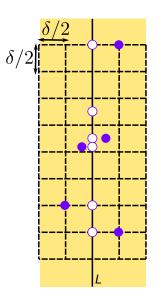

rgesort Recurrence Relations Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument

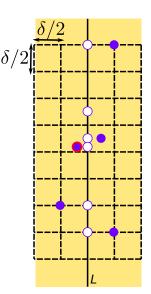
- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_v .
- Converse of the claim: If there exist
 s, s' ∈ S such that s' appears 16 or more
 indices after s in S_v, then s'_v − s_v ≥ δ.
- Use the claim in the algorithm: For every point s ∈ S_y, compute distances only to the next 15 points in S_v.
- Other pairs of points cannot be candidates for the closest pair.

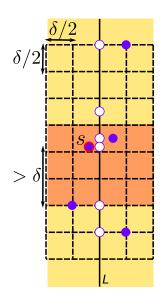


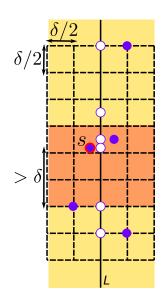
• Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y - s_y \ge \delta$.



- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.


Lectures 13-14: Divide and Conquer Algorithms: Square


- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.


- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_v s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_v .

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_v s_v \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_v .
- We get a count of 12 or more indices (textbook says 16).

Closest Pair: Final Algorithm

```
Closest-Pair(P)
  Construct P_x and P_y (O(n log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_X, P_Y)
Closest-Pair-Rec(P_r, P_v)
  If |P| \le 3 then
    find closest pair by measuring all pairwise distances
  Endif
  Construct Q_x, Q_y, R_x, R_y (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_v, Q_v)
  (r_0^+, r_1^+) = \text{Closest-Pair-Rec}(R_v, R_v)
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set Q
  L = \{(x,y) : x = x^*\}
  S = points in P within distance \delta of L.
  Construct S_n (O(n) time)
  For each point s \in S_v, compute distance from s
      to each of next 15 points in S_v
      Let s, s' be pair achieving minimum of these distances
      (O(n) \text{ time})
  If d(s,s') < \delta then
      Return (s.s')
  Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
      Return (q_0^*, q_1^*)
  Else
      Return (r_0^*, r_1^*)
  Endif
```

Closest Pair of Points

```
Closest-Pair(P)
  Construct P_x and P_y (O(n \log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
Closest-Pair-Rec(P_x, P_v)
  If |P| \leq 3 then
    find closest pair by measuring all pairwise distances
  Endif
  Construct Q_x, Q_y, R_x, R_y (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
  (r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set Q
```

Closest Pair: Final Algorithm

```
x^* = maximum x-coordinate of a point in set Q
L = \{(x,y) : x = x^*\}
```

S = points in P within distance δ of L.

Construct S_{y} (O(n) time)

For each point $s \in S_y$, compute distance from s to each of next 15 points in S_y Let s, s' be pair achieving minimum of these distances (O(n) time)

If
$$d(s,s') < \delta$$
 then Return (s,s')

Else if
$$d(q_0^*, q_1^*) < d(r_0^*, r_1^*)$$
 then Return (q_0^*, q_1^*)

Else

Return
$$(r_0^*, r_1^*)$$

P. 3: 6