Dynamic Programming

T. M. Murali

March 20, 25, 27, April 1, 2024

Algorithm Design Techniques

• Goal: design efficient (polynomial-time) algorithms.

- Goal: design efficient (polynomial-time) algorithms.
- @ Greedy
 - Pro: natural approach to algorithm design.
 - Con: many greedy approaches to a problem. Only some may work.
 - Con: many problems for which no greedy approach is known.

Algorithm Design Techniques

- Goal: design efficient (polynomial-time) algorithms.
- Greedy
 - Pro: natural approach to algorithm design.
 - ▶ Con: many greedy approaches to a problem. Only some may work.
 - ▶ Con: many problems for which *no* greedy approach is known.
- Oivide and conquer
 - ▶ Pro: simple to develop algorithm skeleton.
 - Con: conquer step can be very hard to implement efficiently.
 - Con: usually reduces time for a problem known to be solvable in polynomial time.

T. M. Murali

Algorithm Design Techniques

- Goal: design efficient (polynomial-time) algorithms.
- @ Greedy
 - Pro: natural approach to algorithm design.
 - Con: many greedy approaches to a problem. Only some may work.
 - Con: many problems for which no greedy approach is known.
- Oivide and conquer
 - Pro: simple to develop algorithm skeleton.
 - Con: conquer step can be very hard to implement efficiently.
 - Con: usually reduces time for a problem known to be solvable in polynomial time
- Dynamic programming
 - More powerful than greedy and divide-and-conquer strategies.
 - Implicitly explore space of all possible solutions.
 - Solve multiple sub-problems and build up correct solutions to larger and larger sub-problems.
 - Careful analysis needed to ensure number of sub-problems solved is polynomial in the size of the input.

History of Dynamic Programming

 Bellman pioneered the systematic study of dynamic programming in the 1950s.

History of Dynamic Programming

1950s.

• Bellman pioneered the systematic study of dynamic programming in the

- The Secretary of Defense at that time was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to" (Bellman, R. E., Eye of the Hurricane, An Autobiography).

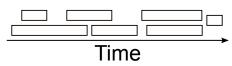
T. M. Murali March 20, 25, 27, April 1, 2024 Dynamic Programming

Applications of Dynamic Programming

- Computational biology: Smith-Waterman algorithm for sequence alignment.
- Operations research: Bellman-Ford algorithm for shortest path routing in networks.
- Control theory: Viterbi algorithm for hidden Markov models.
- Computer science (theory, graphics, AI, ...): Unix diff command for comparing two files.

T. M. Murali March 20, 25, 27, April 1, 2024 Dynamic Programming

- Input: Start and end time of each ride.
- Constraint: Cannot be in two places at one time.
- Goal: Compute the largest number of rides you can be on in one day.



Interval Scheduling

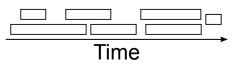
Weighted Interval Scheduling

INSTANCE: Set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

- Two jobs are *compatible* if they do not overlap.
- For any input set of jobs, algorithm must provably compute the largest set of compatible jobs.

Review: Interval Scheduling



Interval Scheduling

INSTANCE: Set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

- Two jobs are *compatible* if they do not overlap.
- For any input set of jobs, algorithm must provably compute the largest set of compatible jobs.
- Greedy algorithm: sort jobs in increasing order of finish times. Add next job to current subset only if it is compatible with previously-selected jobs.

Weighted Interval Scheduling

Weighted Interval Scheduling

INSTANCE: Nonempty set $\{(s_i, f_i), 1 \le i \le n\}$ of start and finish times of n jobs and a weight $v_i > 0$ associated with each job.

SOLUTION: A set S of mutually compatible jobs such that the value $\sum_{i \in S} v_i$ is maximised.

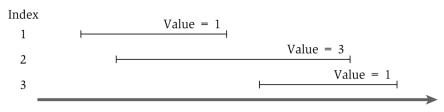


Figure 6.1 A simple instance of weighted interval scheduling.

Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING

INSTANCE: Nonempty set $\{(s_i, f_i), 1 \le i \le n\}$ of start and finish times of n jobs and a weight $v_i \ge 0$ associated with each job.

SOLUTION: A set S of mutually compatible jobs such that the value $\sum_{i \in S} v_i$ is maximised.

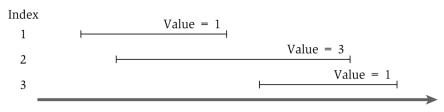
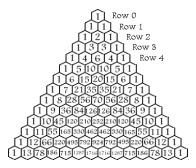


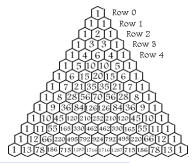
Figure 6.1 A simple instance of weighted interval scheduling.

 Dynamic Programming: Weighted Interval Scheduling: Greedy Algorithm Greedy algorithm can produce arbitrarily bad results for this problem.

Weighted Interval Scheduling

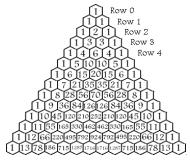


T. M. Murali March 20, 25, 27, April 1, 2024 Dynamic Programming



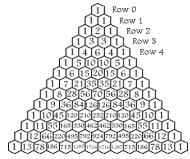
• Pascal's triangle: Dynamic Programming: Pascal's triangle

Dynamic Programming



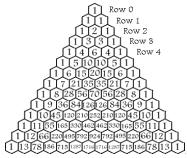
- Pascal's triangle: Dynamic Programming: Pascal's triangle
 - Each element is a binomial co-efficient.
 - Each element is the sum of the two elements above it.

Weighted Interval Scheduling



- Pascal's triangle: Dynamic Programming: Pascal's triangle
 - Each element is a binomial co-efficient.
 - ▶ Each element is the sum of the two elements above it.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$



- Pascal's triangle: Dynamic Programming: Pascal's triangle
 - ▶ Each element is a binomial co-efficient.
 - ▶ Each element is the sum of the two elements above it.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

• Proof: either we include the *n*th element in a subset or not ...

Approach

- Sort jobs in increasing order of finish time and relabel: $f_1 \leq f_2 \leq \ldots \leq f_n$.
- Job i comes before job j if i < j.
- p(j) is the largest index i < j such that job i is compatible with job j. • p(j) = 0 if there is no such job i. • Dynamic Programming: Weighted Interval Scheduling: Compatible jobs

Index		
1	$v_1 = 2$	p(1) = 0
2	$v_2 = 4$	p(2) = 0
3	$v_3 = 4$	p(3) = 1
4	$v_4 = 7$	p(4) = 0
5	$v_5 = 2$	p(5) = 3
6	$v_6 = 1$	p(6) = 3

Approach

- Sort jobs in increasing order of finish time and relabel: $f_1 \leq f_2 \leq \ldots \leq f_n$.
- Job i comes before job j if i < j.
- p(j) is the largest index i < j such that job i is compatible with job j.

 p(j) = 0 if there is no such job i. Dynamic Programming: Weighted Interval Scheduling: Compatible jobs
- All jobs that come before job p(j) are also compatible with job j.

Index	
$1 \vdash v_1 = 2 \vdash p$	p(1) = 0
$v_2 = 4$	p(2) = 0
-	p(3) = 1
	p(4) = 0
	p(5) = 3
$v_6 = 1$	p(6) = 3

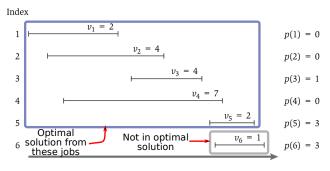
• We will develop optimal algorithm from obvious statements about the problem.

Index

ullet Let $\mathcal O$ be the optimal solution: it contains a subset of the input jobs. Two cases to consider. One of these cases must be true.

Case 1: job n is not in \mathcal{O} .

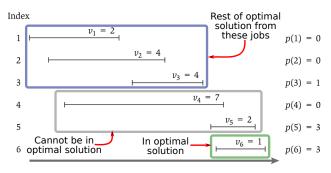
Case 2: job n is in \mathcal{O} .



• Let \mathcal{O} be the optimal solution: it contains a subset of the input jobs. Two cases to consider. One of these cases must be true.

Case 1: job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \ldots, n-1\}$. Case 2: job n is in \mathcal{O} .

T. M. Murali

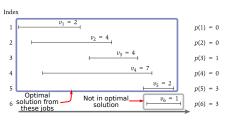


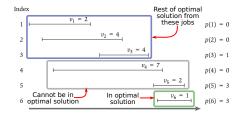
Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.

Case 1: job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \ldots, n-1\}$.

Case 2: job n is in \mathcal{O} .

- **★** \mathcal{O} cannot use incompatible jobs $\{p(n) + 1, p(n) + 2, \dots, n 1\}$.
- * Remaining jobs in \mathcal{O} must be the optimal solution for jobs $\{1, 2, \dots, p(n)\}$.

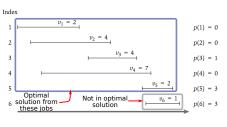


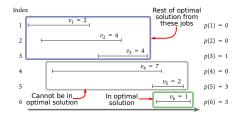


• Let \mathcal{O} be the optimal solution: it contains a subset of the input jobs. Two cases to consider. One of these cases must be true.

```
Case 1: job n is not in \mathcal{O}. \mathcal{O} must be the optimal solution for jobs \{1, 2, \ldots, n-1\}. Case 2: job n is in \mathcal{O}.
```

- * \mathcal{O} cannot use incompatible jobs $\{p(n)+1,p(n)+2,\ldots,n-1\}$.
- ★ Remaining jobs in \mathcal{O} must be the optimal solution for jobs $\{1, 2, ..., p(n)\}$.
- O must be the best of these two choices!

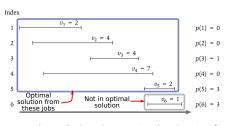


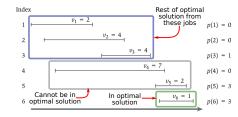


Let O be the optimal solution: it contains a subset of the input jobs. Two
cases to consider. One of these cases must be true.

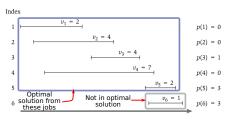
Case 1: job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \ldots, n-1\}$. Case 2: job n is in \mathcal{O} .

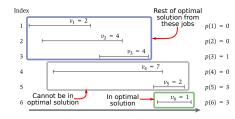
- * \mathcal{O} cannot use incompatible jobs $\{p(n)+1,p(n)+2,\ldots,n-1\}.$
- ★ Remaining jobs in \mathcal{O} must be the optimal solution for jobs $\{1, 2, ..., p(n)\}$.
- O must be the best of these two choices!
- Suggests finding optimal solution for sub-problems consisting of jobs $\{1, 2, ..., j-1, j\}$, for all values of j.



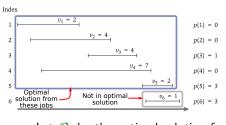


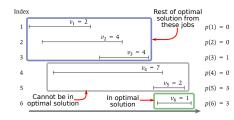
• Let \mathcal{O}_i be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).





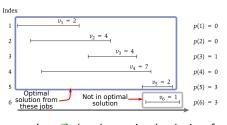
- Let \mathcal{O}_i be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.

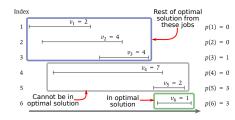




- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution $(\mathsf{OPT}(0) = 0)$.
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(*j*):

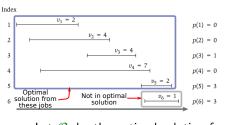
Case 1
$$j \notin \mathcal{O}_j$$
:

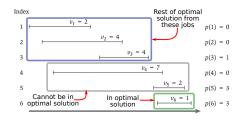




- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution $(\mathsf{OPT}(0) = 0)$.
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

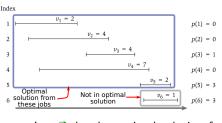
Case 1
$$j \notin \mathcal{O}_j$$
: $OPT(j) = OPT(j-1)$.

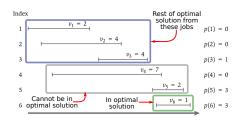




- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution $(\mathsf{OPT}(0) = 0)$.
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

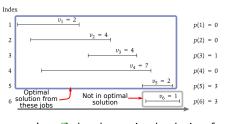
Case 1
$$j \notin \mathcal{O}_j$$
: OPT $(j) = OPT(j-1)$.
Case 2 $j \in \mathcal{O}_j$:

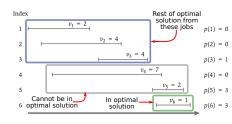




- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution $(\mathsf{OPT}(0) = 0)$.
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

Case 1
$$j \notin \mathcal{O}_j$$
: OPT $(j) = OPT(j-1)$.
Case 2 $j \in \mathcal{O}_j$: OPT $(j) = v_j + OPT(p(j))$

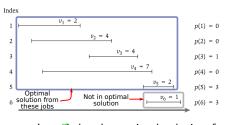


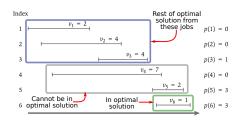


- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

Case 1
$$j \notin \mathcal{O}_j$$
: OPT $(j) = \text{OPT}(j-1)$.
Case 2 $j \in \mathcal{O}_j$: OPT $(j) = v_j + \text{OPT}(p(j))$

$$\mathsf{OPT}(j) = \mathsf{max}\left(v_j + \mathsf{OPT}(p(j)), \mathsf{OPT}(j-1)\right)$$



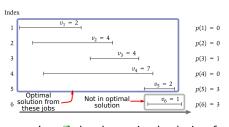


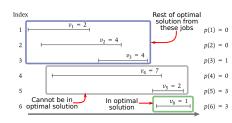
- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

Case 1
$$j \notin \mathcal{O}_j$$
: $\mathsf{OPT}(j) = \mathsf{OPT}(j-1)$.
Case 2 $j \in \mathcal{O}_j$: $\mathsf{OPT}(j) = v_j + \mathsf{OPT}(p(j))$

$$\mathsf{OPT}(j) = \mathsf{max}\left(v_j + \mathsf{OPT}(p(j)), \mathsf{OPT}(j-1)\right)$$

• When does job j belong to \mathcal{O}_i ? • Dynamic Programming. Weighted Interval Scheduling. Optimal Solution





- Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, \dots, j\}$ and OPT(j) be the value of this solution $(\mathsf{OPT}(0) = 0)$.
- We are seeking \mathcal{O}_n with a value of $\mathsf{OPT}(n)$.
- To compute OPT(j):

Case 1
$$j \notin \mathcal{O}_j$$
: OPT $(j) = \text{OPT}(j-1)$.
Case 2 $j \in \mathcal{O}_j$: OPT $(j) = v_j + \text{OPT}(p(j))$

$$\mathsf{OPT}(j) = \mathsf{max}\left(v_j + \mathsf{OPT}(p(j)), \mathsf{OPT}(j-1)\right)$$

• When does job j belong to \mathcal{O}_j ? • Dynamic Programming: Weighted Interval Scheduling: Optimal Solution If and only if $v_j + \mathsf{OPT}(p(j)) \geq \mathsf{OPT}(j-1)$.

Recursive Algorithm

$$\mathsf{OPT}(j) = \mathsf{max}(v_j + \mathsf{OPT}(p(j)), \mathsf{OPT}(j-1))$$

```
\label{eq:compute-Opt} \begin{split} & \text{Compute-Opt}(j) \\ & \text{If } j = 0 \text{ then} \\ & \text{Return } 0 \\ & \text{Else} \\ & \text{Return } \max(v_j + \text{Compute-Opt}(\texttt{p(j)}), \text{ Compute-Opt}(j-1)) \\ & \text{Endif} \end{split}
```

Recursive Algorithm

$$\mathsf{OPT}(j) = \mathsf{max}(v_j + \mathsf{OPT}(p(j)), \mathsf{OPT}(j-1))$$

```
Compute-Opt(j)

If j = 0 then

Return 0

Else

Return \max(\nu_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))

Endif
```

• Correctness of algorithm follows by induction (see textbook for proof).

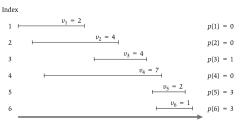


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

```
\mathsf{OPT}(6) = \bullet Dynamic Programming: Weighted Interval Scheduling: Optimal Solution for Example: \mathsf{OPT}(5) = \mathsf{OPT}(4) = \mathsf{OPT}(3) = \mathsf{OPT}(2) = \mathsf{OPT}(1) = \mathsf{OPT}(0) = \mathsf{OPT}(0) = \mathsf{OPT}(0) = \mathsf{OPT}(0) = \mathsf{OPT}(0)
```

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

OPT(6) =
$$\max(v_6 + OPT(p(6)), OPT(5)) = \max(1 + OPT(3), OPT(5))$$

OPT(5) =
OPT(4) =
OPT(3) =
OPT(2) =
OPT(1) =
OPT(0) = 0

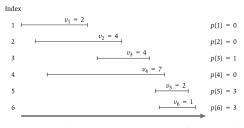


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$OPT(6) = max(v_6 + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))$$

 $OPT(5) = max(v_5 + OPT(p(5)), OPT(4)) = max(2 + OPT(3), OPT(4))$
 $OPT(4) = OPT(3) = OPT(2) = OPT(1) = OPT(0) = 0$

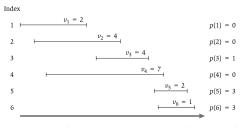


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{array}{l} \mathsf{OPT}(6) = \mathsf{max}(\nu_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) = \; \mathsf{max}(\nu_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) = \; \mathsf{max}(\nu_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) = \\ \mathsf{OPT}(2) = \\ \mathsf{OPT}(1) = \\ \mathsf{OPT}(0) = 0 \end{array}$$

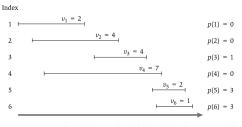


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(\nu_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \mathsf{max}(\nu_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ &\mathsf{OPT}(4) = \mathsf{max}(\nu_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ &\mathsf{OPT}(3) = \mathsf{max}(\nu_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ &\mathsf{OPT}(2) = \\ &\mathsf{OPT}(1) = \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

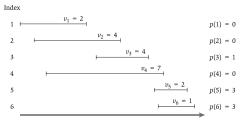


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{array}{l} \mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) = \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) = \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) = \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ \mathsf{OPT}(2) = \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) \\ \mathsf{OPT}(1) = \\ \mathsf{OPT}(0) = 0 \end{array}$$

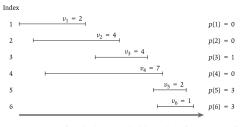


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ &\mathsf{OPT}(4) = \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ &\mathsf{OPT}(3) = \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ &\mathsf{OPT}(2) = \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

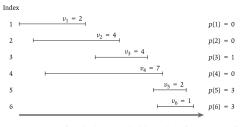


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ &\mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ &\mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ &\mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

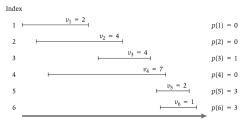


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ &\mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ &\mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ &\mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

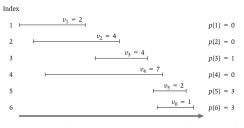


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ &\mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ &\mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ &\mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

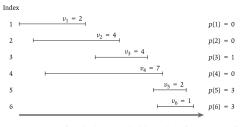


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ &\mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8 \\ &\mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ &\mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ &\mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

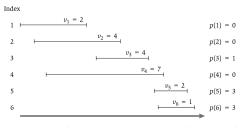


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{aligned} &\mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8 \\ &\mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8 \\ &\mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \; \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ &\mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \; \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ &\mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \; \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ &\mathsf{OPT}(1) = v_1 = 2 \\ &\mathsf{OPT}(0) = 0 \end{aligned}$$

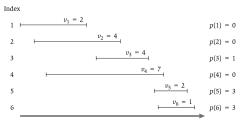


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{array}{l} \mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8 \\ \mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8 \\ \mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ \mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ \mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) = v_1 = 2 \\ \mathsf{OPT}(0) = 0 \end{array}$$

Optimal solution is

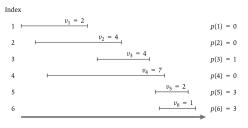


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

$$\begin{array}{l} \mathsf{OPT}(6) = \mathsf{max}(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \mathsf{max}(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8 \\ \mathsf{OPT}(5) = \; \mathsf{max}(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \mathsf{max}(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8 \\ \mathsf{OPT}(4) = \; \mathsf{max}(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \mathsf{max}(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ \mathsf{OPT}(3) = \; \mathsf{max}(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \mathsf{max}(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ \mathsf{OPT}(2) = \; \mathsf{max}(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \mathsf{max}(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) = v_1 = 2 \\ \mathsf{OPT}(0) = 0 \end{array}$$

• Optimal solution is job 5, job 3, and job 1.

```
\label{eq:compute-Opt(j)} \begin{split} &\text{If } j = 0 \text{ then} \\ &\text{Return 0} \\ &\text{Else} \\ &\text{Return max}(v_j + \text{Compute-Opt}(\texttt{p(j)}), \text{ Compute-Opt}(j-1)) \\ &\text{Endif} \end{split}
```

Compute-Opt(j)

Running Time of Recursive Algorithm

```
If j=0 then Return 0 Else Return \max(\nu_j+\text{Compute-Opt}(p(j)), Compute-Opt(j-1)) Endif
```

What is the running time of the algorithm? Compute-Opt(j)

If i = 0 then

Running Time of Recursive Algorithm

```
Return 0
Else
  Return \max(v_i + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))
Endif
```

 What is the running time of the algorithm? Can be exponential in n.

Running Time of Recursive Algorithm

Compute-Opt(j)

If i = 0 then

Return 0 Else

Return $\max(v_i + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))$ Endif

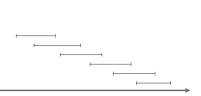


Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-Opt recursion will take exponential time. The values of all intervals in this instance are 1.

- What is the running time of the algorithm? Can be exponential in n.
- When p(j) = j 2, for all $j \ge 2$: recursive calls are for i-1 and i-2.

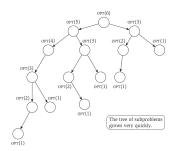


Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance of Figure 6.2.

Memoisation

• Store OPT(j) values in a cache and reuse them rather than recompute them.

Weighted Interval Scheduling

• Store OPT(j) values in a cache and reuse them rather than recompute them.

```
M-Compute-Opt(j)
  If j=0 then
    Return 0
  Else if M[j] is not empty then
    Return M[i]
  Else
   Define M[j] = \max(v_j + M - Compute - Opt(p(j)), M - Compute - Opt(j-1))
    Return M[j]
  Endif
```

Weighted Interval Scheduling

```
\label{eq:model} \begin{tabular}{ll} M-Compute-Opt(j) \\ If $j=0$ then \\ Return 0 \\ Else if $M[j]$ is not empty then \\ Return $M[j]$ \\ Else \\ Define $M[j] = \max(v_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))$ \\ Return $M[j]$ \\ Endif \end{tabular}
```

• Claim: running time of this algorithm is O(n) (after sorting).

Running Time of Memoisation

```
M-Compute-Opt(j)

If j=0 then
Return 0

Else if M[j] is not empty then
Return M[j]

Else

Define M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1))
Return M[j]

Endif
```

- Claim: running time of this algorithm is O(n) (after sorting).
- ullet Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in recursive calls.
- Total time spent is the order of the number of recursive calls to M-Compute-Opt.
- How many such recursive calls are there in total?

Running Time of Memoisation

```
M-Compute-Opt(j)  
If j=0 then  
Return 0  
Else if M[j] is not empty then  
Return M[j]  
Else  
Define M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1))  
Return M[j]  
Endif
```

- Claim: running time of this algorithm is O(n) (after sorting).
- Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in recursive calls.
- Total time spent is the order of the number of recursive calls to M-Compute-Opt.
- How many such recursive calls are there in total?
- ullet Use number of filled entries in M as a measure of progress.
- ullet Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.
- Therefore, total number of recursive calls is O(n).

T. M. Murali March 20, 25, 27, April 1, 2024

• Explicitly store \mathcal{O}_i in addition to $\mathsf{OPT}(j)$.

Weighted Interval Scheduling

• Explicitly store \mathcal{O}_i in addition to OPT(j). Running time becomes $O(n^2)$.

T. M. Murali

March 20, 25, 27, April 1, 2024

- Explicitly store \mathcal{O}_i in addition to OPT(j). Running time becomes $O(n^2)$.
- Recall: request j belong to \mathcal{O}_i if and only if $v_i + \mathsf{OPT}(p(j)) \geq \mathsf{OPT}(j-1)$.
- Can recover O_i from values of the optimal solutions in O(i) time.

- Explicitly store \mathcal{O}_j in addition to $\mathsf{OPT}(j)$. Running time becomes $O(n^2)$.
- Recall: request j belong to \mathcal{O}_j if and only if $v_j + \mathsf{OPT}(p(j)) \ge \mathsf{OPT}(j-1)$.
- Can recover \mathcal{O}_j from values of the optimal solutions in O(j) time.

```
\begin{aligned} &\text{Find-Solution}(j) \\ &\text{If } j=0 \text{ then} \\ &\text{Output nothing} \\ &\text{Else} \\ &\text{If } v_j + M[p(j)] \geq M[j-1] \text{ then} \\ &\text{Output } j \text{ together with the result of Find-Solution}(p(j)) \\ &\text{Else} \\ &\text{Output the result of Find-Solution}(j-1) \\ &\text{Endif} \end{aligned}
```

From Recursion to Iteration

- Unwind the recursion and convert it into iteration.
- Can compute values in M iteratively in O(n) time.
- Find-Solution works as before.

```
\begin{split} & \text{Iterative-Compute-Opt} \\ & M[0] = 0 \\ & \text{For } j = 1, 2, \dots, n \\ & M[j] = \max(v_j + M[p(j)], M[j-1]) \\ & \text{Endfor} \end{split}
```

Basic Outline of Dynamic Programming

- To solve a problem, we need a collection of sub-problems that satisfy a few properties:
 - There are a polynomial number of sub-problems.
 - The solution to the problem can be computed easily from the solutions to the sub-problems.
 - There is a natural ordering of the sub-problems from "smallest" to "largest".
 - There is an easy-to-compute recurrence that allows us to compute the solution to a sub-problem from the solutions to some smaller sub-problems.

Basic Outline of Dynamic Programming

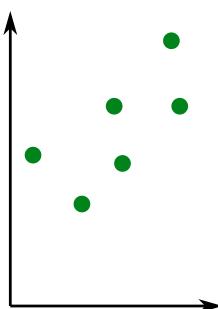
- To solve a problem, we need a collection of sub-problems that satisfy a few properties:
 - 1 There are a polynomial number of sub-problems.
 - 2 The solution to the problem can be computed easily from the solutions to the sub-problems.
 - 3 There is a natural ordering of the sub-problems from "smallest" to "largest".
 - There is an easy-to-compute recurrence that allows us to compute the solution to a sub-problem from the solutions to some smaller sub-problems.
- Difficulties in designing dynamic programming algorithms:
 - Which sub-problems to define?
 - 4 How can we tie together sub-problems using a recurrence?
 - Output
 How do we order the sub-problems (to allow iterative computation of optimal solutions to sub-problems)?

T. M. Murali March 20, 25, 27, April 1, 2024 **Dynamic Programming**

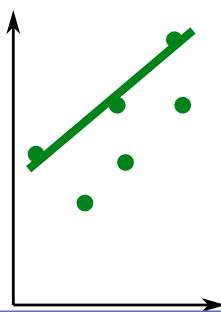
Weighted Interval Scheduling

Imagery from street view vehicles is accompanied by laser range data, which is aggregated and simplified by robustly fitting it in a coarse mesh that models the dominant scene surfaces.

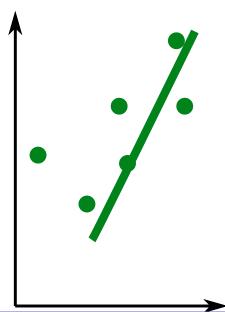
Fitting Lines

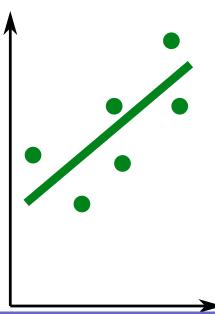


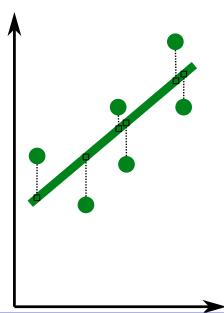
T. M. Murali March 20, 25, 27, April 1, 2024

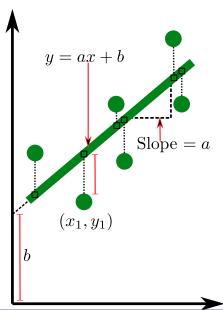


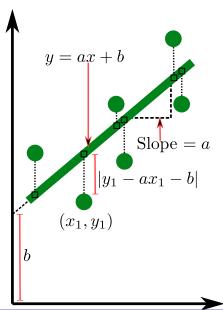
T. M. Murali March 20, 25, 27, April 1, 2024

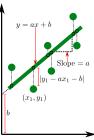




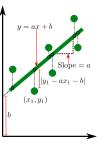








- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.



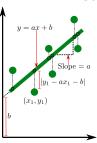
- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.

Least Squares Regression

INSTANCE: Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

SOLUTION: Line L: y = ax + b that minimises

$$Error(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2.$$



- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.

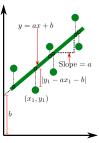
Least Squares Regression

INSTANCE: Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

SOLUTION: Line L: y = ax + b that minimises

Error(L, P) =
$$\sum_{i=1}^{n} (y_i - ax_i - b)^2$$
.

- How many unknown parameters must we find values for?



- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.

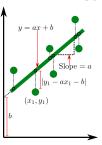
Least Squares Regression

INSTANCE: Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

SOLUTION: Line L: y = ax + b that minimises

$$Error(L, P) = \sum_{i=1}^{\infty} (y_i - ax_i - b)^2.$$

How many unknown parameters must we find values for? Two: a and b.



- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.

Least Squares Regression

INSTANCE: Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

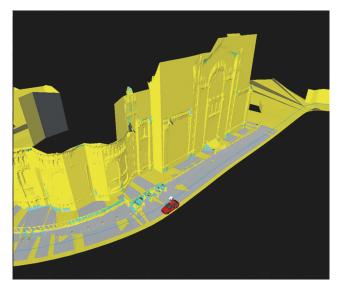
SOLUTION: Line L: y = ax + b that minimises

$$Error(L, P) = \sum_{i=1}^{\infty} (y_i - ax_i - b)^2.$$

- How many unknown parameters must we find values for? Two: a and b.
- Solution is achieved by

$$a = \frac{n\sum_{i} x_{i}y_{i} - \left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n\sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \text{ and } b = \frac{\sum_{i} y_{i} - a\sum_{i} x_{i}}{n}$$

Segmented Least Squares



Segmented Least Squares

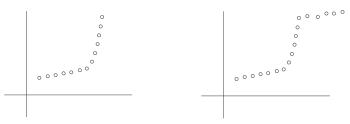
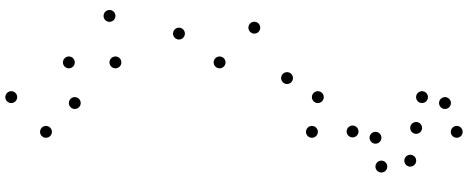
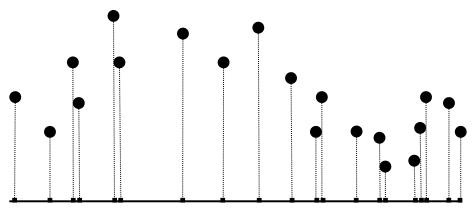


Figure 6.7 A set of points that lie approximately on two lines. Figure 6.8 A set of points that lie approximately on three lines.

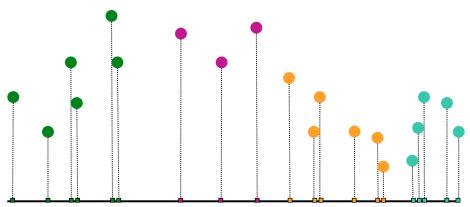
- Want to fit multiple lines through P.
- Each line must fit contiguous set of x-coordinates.
- Lines must minimise total error.



Input contains a set of two-dimensional points.

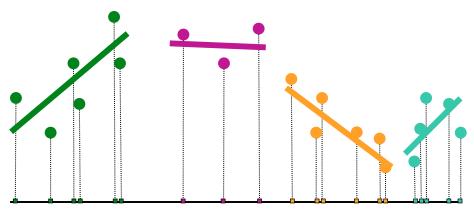


Consider the sorted *x*-coordinates of the points in the input.

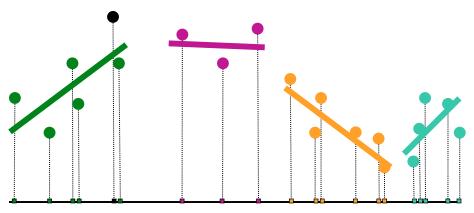


Divide the points into segments; each *segment* contains consecutive points in the sorted order by *x*-coordinate.

Here we are defining a meaning for "segment" that is specific to this problem.



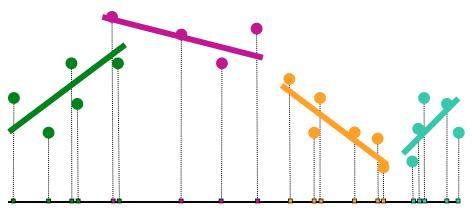
Fit the best line for each segment.



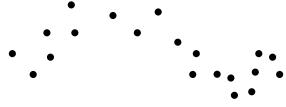
Illegal solution: black point is not in any segment.

Weighted Interval Scheduling

Example of Segmented Least Squares



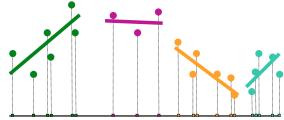
Illegal solution: leftmost purple point has *x*-coordinate between last two points in green segment.



SEGMENTED LEAST SQUARES

INSTANCE: Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points,

 $x_1 < x_2 < \cdots < x_n$



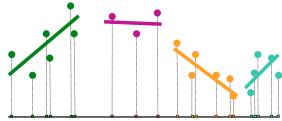
SEGMENTED LEAST SQUARES

INSTANCE: Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points,

 $X_1 < X_2 < \cdots < X_n$

- \bigcirc An integer k,
- 2 a partition of P into k segments $\{P_1, P_2, \dots, P_k\}$, and
- 3 for each segment P_i , the best-fit line $L_i: y = a_i x + b_i, 1 \le j \le k$ that minimise the total error

$$\sum_{i=1}^{n} \mathsf{Error}(L_j, P_j)$$



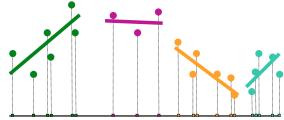
SEGMENTED LEAST SQUARES

INSTANCE: Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points,

 $x_1 < x_2 < \cdots < x_n$ and a parameter C > 0.

- \bigcirc An integer k,
- 2 a partition of P into k segments $\{P_1, P_2, \dots, P_k\}$, and
- 3 for each segment P_i , the best-fit line $L_i: y = a_i x + b_i, 1 \le j \le k$ that minimise the total error

$$\sum_{i=1}^{n} \operatorname{Error}(L_j, P_j) + Ck$$



SEGMENTED LEAST SQUARES

INSTANCE: Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of n points,

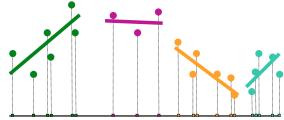
 $x_1 < x_2 < \cdots < x_n$ and a parameter C > 0.

SOLUTION:

- An integer k,
- ② a partition of P into k segments $\{P_1, P_2, \dots, P_k\}$, and
- for each segment P_j , the best-fit line L_j : $y = a_j x + b_j, 1 \le j \le k$ that minimise the total error p_j

$$\sum_{i=1}^{n} \operatorname{Error}(L_j, P_j) + Ck$$

• How many unknown parameters must we find? 2k, and we must find k too!



SEGMENTED LEAST SQUARES

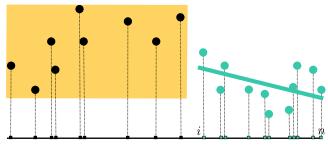
INSTANCE: Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of n points,

 $x_1 < x_2 < \cdots < x_n$ and a parameter C > 0.

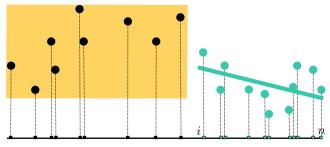
- \bigcirc An integer k,
- ② a partition of P into k segments $\{P_1, P_2, \ldots, P_k\}$, and
- for each segment P_j , the best-fit line L_j : $y = a_j x + b_j, 1 \le j \le k$ that minimise the total error p_j

$$\sum_{i=1}^{n} \operatorname{Error}(L_j, P_j) + Ck$$

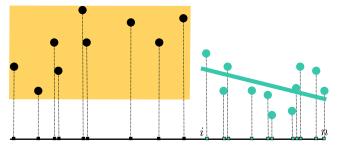
- How many unknown parameters must we find? 2k, and we must find k too!
 Assume points in P are sorted in increasing order of x-coordinate.
- T. M. Murali March 20, 25, 27, April 1, 2024 Dynamic Programming



• Observation: Where does the last segment in the optimal solution end?

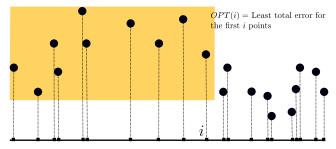


• Observation: Where does the last segment in the optimal solution end? p_n , and this segment starts at some point p_i . We don't know i yet!

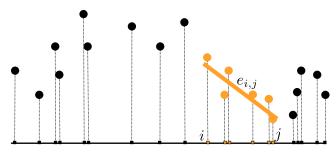


• Observation: Where does the last segment in the optimal solution end? p_n , and this segment starts at some point p_i . We don't know i yet!

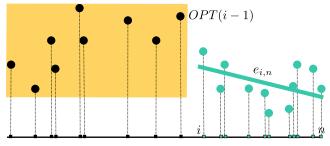
• If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_n\}$, then optimal total error for n points = Error of the best line fitting $\{p_i, p_{i+1}, \dots, p_n\}$ + C + optimal total error for the first i-1 points.



- Observation: Where does the last segment in the optimal solution end? p_n , and this segment starts at some point p_i . We don't know i yet!
- Let OPT(i) be the optimal total error for the points $\{p_1, p_2, \dots, p_i\}$.
- We want to compute OPT(n).
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_n\}$, then optimal total error for n points = Error of the best line fitting $\{p_i, p_{i+1}, \dots, p_n\}$ + C + optimal total error for the first i-1 points.

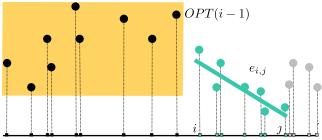


- Observation: Where does the last segment in the optimal solution end? p_n and this segment starts at some point p_i. We don't know i yet!
- Let OPT(i) be the optimal total error for the points $\{p_1, p_2, \dots, p_i\}$.
- We want to compute OPT(n).
- Let $e_{i,j}$ denote the minimum error of a (single) line that fits $\{p_i, p_2, \dots, p_i\}$.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_n\}$, then optimal total error for *n* points = Error of the best line fitting $\{p_i, p_{i+1}, \dots, p_n\}$ + C + optimal total error for the first i-1 points.

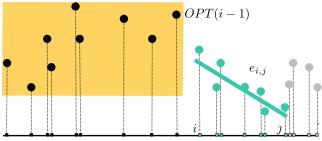


- Observation: Where does the last segment in the optimal solution end? p_n , and this segment starts at some point p_i . We don't know i yet!
- Let OPT(i) be the optimal total error for the points $\{p_1, p_2, \dots, p_i\}$.
- We want to compute OPT(n).
- Let $e_{i,j}$ denote the minimum error of a (single) line that fits $\{p_i, p_2, \dots, p_j\}$.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_n\}$, then

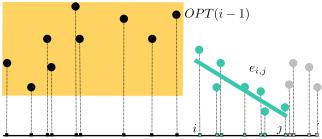
$$\mathsf{OPT}(n) = e_{i,n} + C + \mathsf{OPT}(i-1)$$



• In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_i\}$, i.e., we want to compute OPT(j), where j lies between 1 and n.

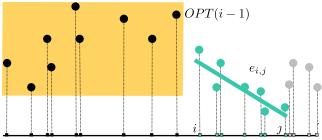


- In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_i\}$, i.e., we want to compute OPT(i), where i lies between 1 and n.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_i\}$, then optimal total error for first i points = Error of the best line fitting $\{p_i, p_{i+1}, \dots, p_i\} + C$ + optimal total error for the first i-1 points.



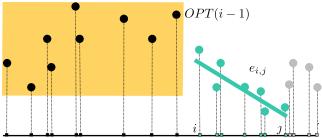
- In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_i\}$, i.e., we want to compute OPT(i), where i lies between 1 and n.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_i\}$, then

$$\mathsf{OPT}(j) = e_{i,j} + C + \mathsf{OPT}(i-1)$$



- In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_i\}$, i.e., we want to compute OPT(i), where i lies between 1 and n.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_i\}$, then

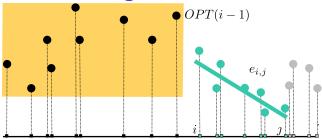
$$\mathsf{OPT}(j) = e_{i,j} + C + \mathsf{OPT}(i-1)$$



- In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_i\}$, i.e., we want to compute OPT(j), where j lies between 1 and n.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_i\}$, then

$$\mathsf{OPT}(j) = e_{i,j} + C + \mathsf{OPT}(i-1)$$

• We don't know i! But i can take only j distinct values: 1, 2, ..., j - 1, j. Therefore. $\mathsf{OPT}(j) = \min_{1 \leq i \leq i} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$



- In general, we want to solve sub-problem on the points $\{p_1, p_2, \dots p_j\}$, i.e., we want to compute OPT(j), where j lies between 1 and n.
- If the last segment in the optimal partition is $\{p_i, p_{i+1}, \dots, p_i\}$, then

$$\mathsf{OPT}(j) = e_{i,j} + C + \mathsf{OPT}(i-1)$$

- We don't know i! But i can take only j distinct values: $1,2,\ldots,j-1,j$. Therefore, $\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$
- Segment $\{p_i, p_{i+1}, \dots p_j\}$ is part of the optimal solution for this sub-problem if and only if the minimum value of $\mathsf{OPT}(j)$ is obtained using index i.

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

```
Segmented-Least-Squares(n)  \begin{array}{l} \text{Array } M[0 \ldots n] \\ \text{Set } M[0] = 0 \\ \text{For all pairs } i \leq j \\ \text{Compute the least squares error } e_{i,j} \text{ for the segment } p_i, \ldots, p_j \\ \text{Endfor} \\ \text{For } j = 1, 2, \ldots, n \\ \text{Use the recurrence (6.7) to compute } M[j] \\ \text{Endfor} \\ \text{Return } M[n] \\ \end{array}
```

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

```
Segmented-Least-Squares(n)  \begin{array}{lll} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

• We can find the segments in the optimal solution by backtracking.

Running Time

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

```
\begin{aligned} & \text{Segmented-Least-Squares} \, (\mathbf{n}) \\ & \text{Array} \, \, M[0 \dots n] \\ & \text{Set} \, \, M[0] = 0 \\ & \text{For all pairs} \, \, i \leq j \\ & \text{Compute the least squares error} \, \, e_{i,j} \, \, \text{for the segment} \, \, p_i, \dots, p_j \\ & \text{Endfor} \\ & \text{For} \, \, j = 1, 2, \dots, n \\ & \text{Use the recurrence} \, \, (6.7) \, \, \text{to compute} \, \, M[j] \\ & \text{Endfor} \\ & \text{Return} \, \, M[n] \end{aligned}
```

• Let T(n) be the running time of this algorithm.

$$T(n) = \sum_{1 \le j \le n} \sum_{1 \le i \le j} O(j-i) =$$

Running Time

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

```
Segmented-Least-Squares(n)
 Array M[0...n]
 Set M[0] = 0
 For all pairs i \leq j
    Compute the least squares error e_{i,j} for the segment p_i,\ldots,p_j
 Endfor
 For i = 1, 2, ..., n
    Use the recurrence (6.7) to compute M[j]
 Endfor
 Return M[n]
```

• Let T(n) be the running time of this algorithm.

$$T(n) = \sum_{1 \le j \le n} \sum_{1 \le i \le j} O(j-i) = ?$$

Running Time

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

```
Segmented-Least-Squares(n)
 Array M[0...n]
 Set M[0] = 0
 For all pairs i \leq j
    Compute the least squares error e_{i,j} for the segment p_i,\ldots,p_j
 Endfor
 For i = 1, 2, ..., n
    Use the recurrence (6.7) to compute M[j]
 Endfor
 Return M[n]
```

• Let T(n) be the running time of this algorithm.

$$T(n) = \sum_{1 \le j \le n} \sum_{1 \le i \le j} O(j-i) = O(n^3)$$

$$\mathsf{OPT}(j) = \min_{1 \leq i \leq j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

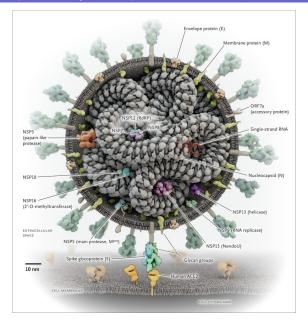
• Let T(n) be the running time of this algorithm.

$$T(n) = \sum_{1 \le j \le n} \sum_{1 \le i \le j} O(j-i) = O(n^3)$$

• Running time is $O(n^3)$; can be improved to $O(n^2)$.

Normalized Reactivity

SL1



RNA Molecules

- RNA is a basic biological molecule. It is single stranded.
- RNA molecules fold into complex "secondary structures."
- Secondary structure often governs the behaviour of an RNA molecule.
- Various rules govern secondary structure formation:

RNA Molecules

- RNA is a basic biological molecule. It is single stranded.
- RNA molecules fold into complex "secondary structures."
- Secondary structure often governs the behaviour of an RNA molecule.
- Various rules govern secondary structure formation:
- Pairs of bases match up; each base matches with ≤ 1 other base.
- 2 Adenine always matches with Uracil.
- Oytosine always matches with Guanine.
- There are no kinks in the folded molecule
- Structures are "knot-free".

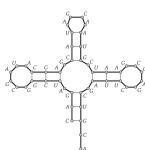
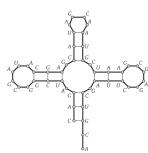


Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the sequence; thin lines indicate pairs of elements that are matched.

- RNA is a basic biological molecule. It is single stranded. RNA molecules fold into complex "secondary structures."
- Secondary structure often governs the behaviour of an RNA molecule.
- Various rules govern secondary structure formation:
- Pairs of bases match up; each base matches with ≤ 1 other base.
- Adenine always matches with Uracil.
- Cytosine always matches with Guanine.
- There are no kinks in the folded molecule
- Structures are "knot-free".



RNA Secondary Structure

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the sequence; thin lines indicate pairs of elements that are matched.

• Problem: given an RNA molecule, predict its secondary structure.

RNA Molecules

- RNA is a basic biological molecule. It is single stranded.
- RNA molecules fold into complex "secondary structures."
- Secondary structure often governs the behaviour of an RNA molecule.
- Various rules govern secondary structure formation:
- Pairs of bases match up; each base matches with ≤ 1 other base.
- 2 Adenine always matches with Uracil.
- 3 Cytosine always matches with Guanine.
- There are no kinks in the folded molecule
- Structures are "knot-free".

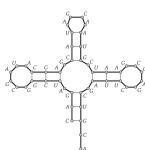


Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the sequence; thin lines indicate pairs of elements that are matched.

- Problem: given an RNA molecule, predict its secondary structure.
- Hypothesis: In the cell, RNA molecules form the secondary structure with the lowest total free energy.

Formulating the Problem

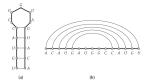


Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the string has been "stretched" lengthwise, and edges connecting matched pairs appear as noncrossing "bubbles" over the string.

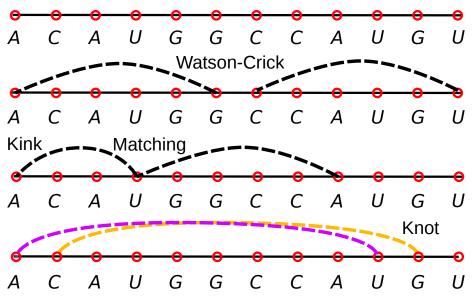
- An RNA molecule is a string $B = b_1 b_2 \dots b_n$; each $b_i \in \{A, C, G, U\}$.
- A secondary structure on B is a set of pairs $S = \{(i,j)\}$, where $1 \leq i,j \leq n$ and

Formulating the Problem

Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the string has been "stretched" lengthwise, and edges connecting matched pairs appear as noncrossing "bubbles" over the string.

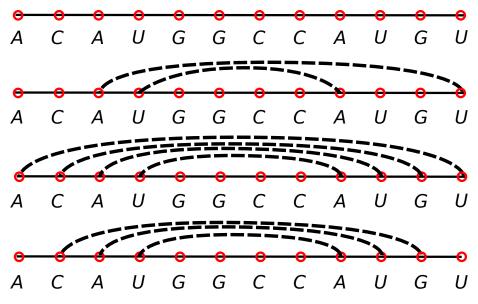
- An RNA molecule is a string $B = b_1 b_2 \dots b_n$; each $b_i \in \{A, C, G, U\}$.
- A secondary structure on B is a set of pairs $S = \{(i,j)\}$, where $1 \le i,j \le n$ and
 - **1** (*No kinks.*) If $(i,j) \in S$, then i < j 4.
 - ② (Watson-Crick) The elements in each pair in S consist of either $\{A, U\}$ or $\{C, G\}$ (in either order).
 - 3 S is a matching: no index appears in more than one pair.
 - (No knots) If (i,j) and (k,l) are two pairs in S, then we cannot have i < k < j < l.
- ullet The energy of a secondary structure ∞ the number of base pairs in it.
- Problem: Compute the largest secondary structure, i.e., with the largest number of base pairs.

Illegal Secondary Structures



T. M. Murali March 20, 25, 27, April 1, 2024 Dynamic Programming

Legal Secondary Structures



T. M. Murali

• OPT(i) is the maximum number of base pairs in a secondary structure for $b_1b_2\ldots b_j$. Dynamic Programming: RNA Secondary Structure: Base cases 1

• *OPT(j)* is the maximum number of base pairs in a secondary structure for $b_1 b_2 \dots b_i$. OPT(i) = 0, if $i \le 5$.

T. M. Murali

- OPT(j) is the maximum number of base pairs in a secondary structure for $b_1b_2...b_j$. OPT(j) = 0, if $j \le 5$.
- ullet In the optimal secondary structure on $b_1b_2\dots b_j$

- *OPT(j)* is the maximum number of base pairs in a secondary structure for $b_1 b_2 \dots b_i$. OPT(j) = 0, if $j \le 5$.
- In the optimal secondary structure on $b_1 b_2 \dots b_i$
 - \bigcirc if j is not a member of any pair, use OPT(j-1).

- OPT(j) is the maximum number of base pairs in a secondary structure for $b_1b_2...b_j$. OPT(j) = 0, if $j \le 5$.
- ullet In the optimal secondary structure on $b_1b_2\dots b_j$
 - **1** if j is not a member of any pair, use OPT(j-1).
 - ② if j pairs with some t < j 4,

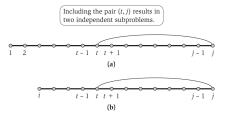


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i) is the maximum number of base pairs in a secondary structure for $b_1 b_2 \dots b_j$. OPT(j) = 0, if $j \le 5$.
- In the optimal secondary structure on $b_1 b_2 \dots b_i$
 - \bullet if *i* is not a member of any pair, use OPT(i-1).
 - ② if j pairs with some t < j 4, knot condition yields two independent sub-problems! Dynamic Programming: RNA Secondary Structure: Subproblems 1

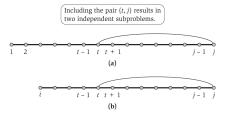


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(j) is the maximum number of base pairs in a secondary structure for $b_1b_2...b_j$. OPT(j) = 0, if $j \le 5$.
- In the optimal secondary structure on $b_1b_2 \dots b_j$
 - if j is not a member of any pair, use OPT(j-1).
 - ② if j pairs with some t < j 4, knot condition yields two independent sub-problems! OPT(t 1) and ???

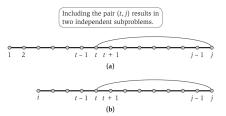


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i) is the maximum number of base pairs in a secondary structure for $b_1 b_2 \dots b_i$. OPT(j) = 0, if $j \le 5$.
- In the optimal secondary structure on $b_1 b_2 \dots b_i$
 - \bullet if *i* is not a member of any pair, use OPT(i-1).
 - ② if j pairs with some t < j 4, knot condition yields two independent sub-problems! OPT(t-1) and ???
- Insight: need sub-problems indexed both by start and by end.

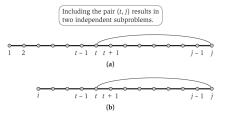


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

RNA Secondary Structure

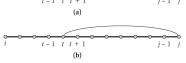


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

• OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_i$. • Dynamic Programming: RNA Secondary Structure: Base cases 2

RNA Secondary Structure

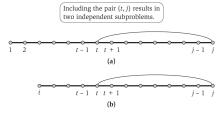


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

• OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_i$. OPT(i,j) = 0, if $i \ge j-4$.

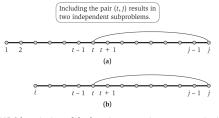


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_i$. OPT(i,j) = 0, if $i \ge j 4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_i$

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(igg)$$

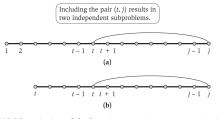


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_j$. OPT(i,j) = 0, if $i \ge j 4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_j$
 - **1** if j is not a member of any pair, compute OPT(i, j-1).

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1),
ight.$$

T. M. Murali

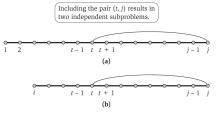


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_i$. OPT(i,j) = 0, if $i \ge j 4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_j$
 - **1** if j is not a member of any pair, compute OPT(i, j-1).
 - 2 if j pairs with some t < j 4, compute

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1),
ight)$$

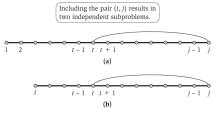


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_j$. OPT(i,j) = 0, if $i \ge j 4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_i$
 - **1** If j is not a member of any pair, compute OPT(i, j-1).
 - ② if j pairs with some t < j 4, compute $\mathsf{OPT}(i, t 1)$ and $\mathsf{OPT}(t + 1, j 1)$.

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1),
ight)$$

T. M. Murali

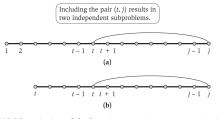


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_j$. OPT(i,j) = 0, if $i \ge j-4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_i$
 - **1** If j is not a member of any pair, compute OPT(i, j 1).
 - ② if j pairs with some t < j 4, compute $\mathsf{OPT}(i, t 1)$ and $\mathsf{OPT}(t + 1, j 1)$.
- Since t can range from i to j-5,

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \, \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

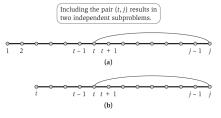
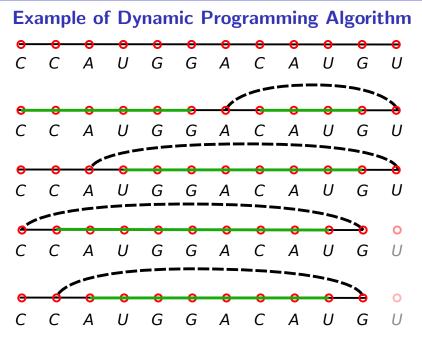


Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one variable, and (b) two variables.

- OPT(i,j) is the maximum number of base pairs in a secondary structure for $b_i b_{i+1} \dots b_j$. OPT(i,j) = 0, if $i \ge j 4$.
- In the optimal secondary structure on $b_i b_{i+1} \dots b_i$
 - **1** If j is not a member of any pair, compute OPT(i, j 1).
 - ② if j pairs with some t < j 4, compute $\mathsf{OPT}(i, t 1)$ and $\mathsf{OPT}(t + 1, j 1)$.
- Since t can range from i to j-5,

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1),\ \mathsf{max}_t\left(1+\mathsf{OPT}(i,t-1)+\mathsf{OPT}(t+1,j-1)\right)\right)$$

• In the "inner" maximisation, t runs over all indices between i and j-5 that are allowed to pair with i.



RNA Secondary Structure

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

There are Dynamic Programming: RNA Secondary Structure: Number of sub-problems sub-problems.

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

- There are $O(n^2)$ sub-problems.
- How do we order them from "smallest" to "largest"?

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

- There are $O(n^2)$ sub-problems.
- How do we order them from "smallest" to "largest"?
- Computing OPT(i, j) involves sub-problems of the form OPT(i, j 1).
- We should compute OPT() values in increasing order of the second argument.

RNA Secondary Structure

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

- There are $O(n^2)$ sub-problems.
- How do we order them from "smallest" to "largest"?
- Computing OPT(i, j) involves sub-problems of the form OPT(i, j 1).
- We should compute OPT() values in increasing order of the second argument.

```
Initialise OPT(i, i)= 0 for every I, i such that i > j-4
for j = 1, 2, ..., n - 1, n
    for i = 1, 2, ..., j - 6, j - 5
         Compute OPT(i, j) using the recurrence above.
```

- How long does it take to compute OPT(i, j)?
- What is the running time of the algorithm?

RNA Secondary Structure

$$\mathsf{OPT}(i,j) = \mathsf{max}\left(\mathsf{OPT}(i,j-1), \mathsf{max}_t \left(1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1)\right)\right)$$

- There are $O(n^2)$ sub-problems.
- How do we order them from "smallest" to "largest"?
- Computing OPT(i, j) involves sub-problems of the form OPT(i, j 1).
- We should compute OPT() values in increasing order of the second argument.

```
Initialise OPT(i, i)= 0 for every I, i such that i > j-4
for j = 1, 2, ..., n - 1, n
    for i = 1, 2, ..., j - 6, j - 5
         Compute OPT(i, j) using the recurrence above.
```

- How long does it take to compute OPT(i,j)? O(j-i)
- What is the running time of the algorithm? $O(n^3)$.

Motivation

- Computational finance:
 - Each node is a financial agent.
 - ▶ The cost c_{uv} of an edge (u, v) is the cost of a transaction in which we buy from agent u and sell to agent v.
 - Negative cost corresponds to a profit.
- Internet routing protocols
 - Dijkstra's algorithm needs knowledge of the entire network.
 - Routers only know which other routers they are connected to.
 - Algorithm for shortest paths with negative edges is decentralised.
 - ▶ We will not study this algorithm in the class. See Chapter 6.9.

Problem Statement

- Input: a directed graph G = (V, E) with a cost function $c : E \to \mathbb{R}$, i.e., c_{uv} is the cost of the edge $(u, v) \in E$.
- A negative cycle is a directed cycle whose edges have a total cost that is negative.
- Two related problems:
 - If G has no negative cycles, find the shortest s-t path: a path from source s to destination t with minimum total cost.
 - 2 Does G have a negative cycle? Application is to arbritrage opportunities.

Problem Statement

- Input: a directed graph G = (V, E) with a cost function $c : E \to \mathbb{R}$, i.e., c_{uv} is the cost of the edge $(u, v) \in E$.
- A negative cycle is a directed cycle whose edges have a total cost that is negative.
- Two related problems:
 - If G has no negative cycles, find the shortest s-t path: a path from source s to destination t with minimum total cost.
 - 2 Does G have a negative cycle? Application is to arbritrage opportunities.

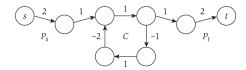


Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going around the cycle C many times).

Problem Statement

- Input: a directed graph G = (V, E) with a cost function $c : E \to \mathbb{R}$, i.e., c_{uv} is the cost of the edge $(u, v) \in E$.
- A negative cycle is a directed cycle whose edges have a total cost that is negative.
- Two related problems:
 - If G has no negative cycles, find the shortest s-t path: a path from source s to destination t with minimum total cost.
 - 2 Does G have a negative cycle? Application is to arbritrage opportunities.

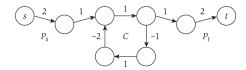


Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going around the cycle C many times).

Run Dijsktra's algorithm.

Figure 6.21 (a) With negative edge costs, Dijkstra's Algorithm can give the wrong answer for the Shortest-Path Problem. (b) Adding 3 to the cost of each edge will make all edges nonnegative, but it will change the identity of the shortest s-t path.

 Run Dijsktra's algorithm.
 Computes incorrect answers because it is greedy.

Figure 6.21 (a) With negative edge costs, Dijkstra's Algorithm can give the wrong answer for the Shortest-Path Problem. (b) Adding 3 to the cost of each edge will make all edges nonnegative, but it will change the identity of the shortest 5-t path.

- Run Dijsktra's algorithm.
 Computes incorrect answers because it is greedy.
- Add some large constant to each edge.

Dynamic Programming: Shortest Paths: Example Graph (b)

Figure 6.21 (a) With negative edge costs, Dijkstra's Algorithm can give the wrong answer for the Shortest-Path Problem. (b) Adding 3 to the cost of each edge will make all edges nonnegative, but it will change the identity of the shortest s-t path.

- Run Dijsktra's algorithm.
 Computes incorrect answers because it is greedy.
- Add some large constant to each edge. Computes incorrect answers because the minimum cost path changes.

Figure 6.21 (a) With negative edge costs, Dijkstra's Algorithm can give the wrong answer for the Shortest-Path Problem. (b) Adding 3 to the cost of each edge will make all edges nonnegative, but it will change the identity of the shortest s-t path.

- Assume G has no negative cycles.
- ullet Claim: There is a shortest path from s to t that is simple (does not repeat a node) Dynamic Programming: Shortest Paths: "Simple" Proof

T. M. Murali

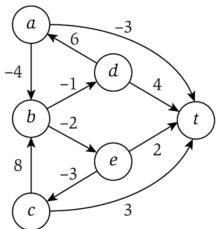
- Assume G has no negative cycles.
- Claim: There is a shortest path from s to t that is simple (does not repeat a node) and hence has at most n-1 edges.

T. M. Murali

- Assume *G* has no negative cycles.
- Claim: There is a shortest path from s to t that is simple (does not repeat a node) and hence has at most n-1 edges.
- How do we define sub-problems?

- Assume *G* has no negative cycles.
- Claim: There is a shortest path from s to t that is simple (does not repeat a node) and hence has at most n-1 edges.
- How do we define sub-problems?
 - Shortest s-t path has ≤ n − 1 edges: how we can reach t using i edges, for different values of i?
 - We do not know which nodes will be in shortest s-t path: how we can reach t from each node in V?

- Assume *G* has no negative cycles.
- Claim: There is a shortest path from s to t that is simple (does not repeat a node) and hence has at most n-1 edges.
- How do we define sub-problems?
 - Shortest s-t path has ≤ n − 1 edges: how we can reach t using i edges, for different values of i?
 - We do not know which nodes will be in shortest s-t path: how we can reach t from each node in V?
- Sub-problems defined by varying the number of edges in the shortest path and by varying the starting node in the shortest path.



- OPT(i, v): minimum cost of a v-t path that uses at most i edges.
- *t* is not explicitly mentioned in the sub-problems.
- Goal is to compute OPT(n-1, s).

- OPT(i, v): minimum cost of a v-t path that uses at most i edges.
- *t* is not explicitly mentioned in the sub-problems.
- Goal is to compute OPT(n-1, s).

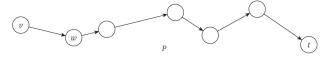


Figure 6.22 The minimum-cost path P from v to t using at most i edges.

• Let P be the optimal path whose cost is OPT(i, v).

- OPT(i, v): minimum cost of a v-t path that uses at most i edges.
- *t* is not explicitly mentioned in the sub-problems.
- Goal is to compute OPT(n-1, s).

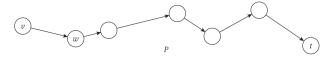


Figure 6.22 The minimum-cost path P from v to t using at most i edges.

- Let P be the optimal path whose cost is OPT(i, v).
 - **1** If P actually uses i-1 edges, then OPT(i, v) = OPT(i-1, v).
 - ② If first node on P is w, then $OPT(i, v) = c_{vw} + OPT(i 1, w)$.

- OPT(i, v): minimum cost of a v-t path that uses at most i edges.
- *t* is not explicitly mentioned in the sub-problems.
- Goal is to compute OPT(n-1, s).

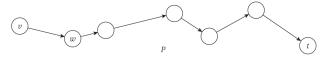


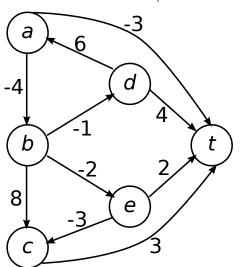
Figure 6.22 The minimum-cost path P from v to t using at most i edges.

- Let P be the optimal path whose cost is OPT(i, v).
 - **1** If P actually uses i-1 edges, then OPT(i, v) = OPT(i-1, v).
 - ② If first node on P is w, then $OPT(i, v) = c_{vw} + OPT(i 1, w)$.

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)
ight)$$

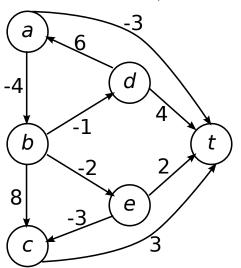
T. M. Murali

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



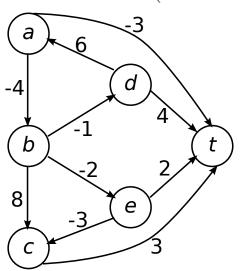
					/	
	0	1	2	3	4	5
t						
a						
b						
C						
d						
e						

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



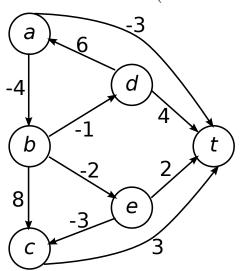
•					/	
	0	1	2	3	4	5
t						
a						
b						
C						
d						
9						

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



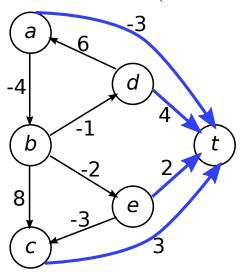
_ •					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
а	∞					
b	∞					
С	∞					
d	∞					
e	∞					

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



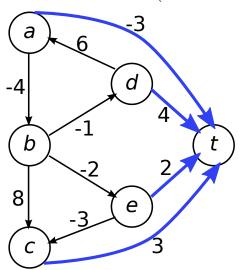
_ •					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8					
a b	8					
C	8					
d	8					
e	8					

$$\mathsf{OPT}(i, v) = \min\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



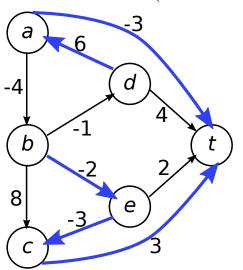
					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8	-3				
b	8	∞				
С	8	3				
d	8	4				
e	8	2				

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



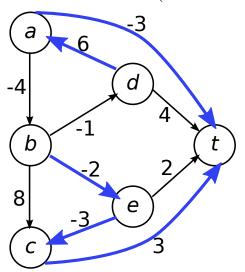
_ •					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
а	8	-3				
b	8	8				
C	8	3				
d	8	4				
e	8	2				

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



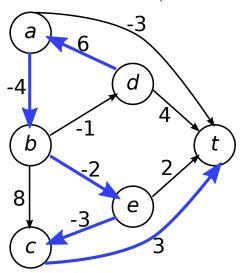
_ •					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8	-3	-3			
b	8	8	0			
С	8	3	3			
d	8	4	3			
e	8	2	0			

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



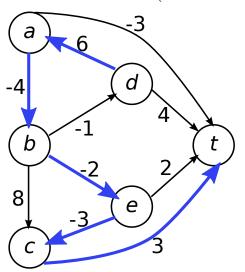
·V					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8	-3	-3			
b	8	8	0			
c	8	3	3			
d	8	4	3			
e	8	2	0			
b c d	8 8 8	8 3 4	0 3 3			

$$\mathsf{OPT}(i, v) = \min\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



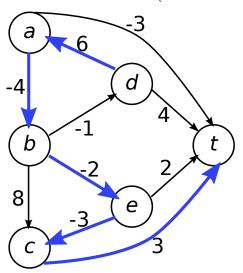
-					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
а	8	-3	-3	-4		
			0			
C	8		3	3		
d	8	4	3	3		
e	8	2	0	0		

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



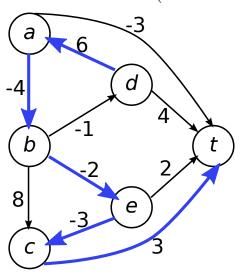
_ •					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
а	8	-3	-3	-4		
b	8	8	0	-2	_	
C	8	3	3	3		
d	8	4	3	3		
e	8	2	0	0		

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



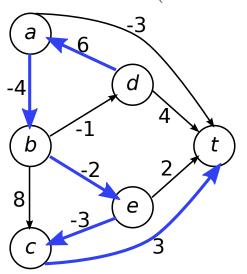
$\subset V$					/	
	0	1	2	3	4	5
t	0		0		0	0
а	8	-3	-3	-4	-6	
b	8	8	0	-2	-2	
C	8	3	3	3	3	
d	8	4	3	3	2	
e	8	2	0	0	0	

$$\mathsf{OPT}(i, v) = \min\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



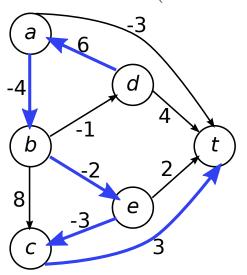
= v					/	
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8		-3		-6	
b	8	8	0	-2	-2	
С	8	3	3	3	3	
d	8	4	3	3	2	
e	8	2	0	0	0	

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



= v			/				
	0	1	2	3	4	5	
t			0			0	
•-	8	-3	-3	-4	-6	-6	
b	8	8	0	-2	-2	-2	
С	8	3	3	3	3	3	
d	8	4	3	3	2	0	
e	8	2	0	0	0	0	

$$\mathsf{OPT}(i, v) = \mathsf{min}\left(\mathsf{OPT}(i-1, v), \min_{w \in V}\left(c_{vw} + \mathsf{OPT}(i-1, w)\right)\right)$$



_ •		/					
	0	1	2	3	4	5	
	0						
	8						
b	8	8	0	-2	-2	-2	
c	8	3	3	3	3	3	
d	8	4	3	3	2	0	
e	8	2	0	0	0	0	

Alternate Dynamic Programming Formulation

• $OPT_{=}(i, v)$: minimum cost of a v-t path that uses exactly i edges. Goal is to compute

Alternate Dynamic Programming Formulation

• $OPT_{=}(i, v)$: minimum cost of a v-t path that uses exactly i edges. Goal is to compute

$$\min_{i=1}^{n-1} \mathsf{OPT}_{=}(\mathsf{i}, \mathsf{s}).$$

Alternate Dynamic Programming Formulation

• $OPT_{=}(i, v)$: minimum cost of a v-t path that uses exactly i edges. Goal is to compute

$$\min_{i=1}^{n-1} \mathsf{OPT}_{=}(\mathsf{i}, \mathsf{s}).$$

• Let P be the optimal path whose cost is $\mathsf{OPT}_{=}(\mathsf{i}, \mathsf{v})$.

Alternate Dynamic Programming Formulation

• $OPT_{=}(i, v)$: minimum cost of a v-t path that uses exactly i edges. Goal is to compute

$$\min_{i=1}^{n-1} \mathsf{OPT}_{=}(\mathsf{i}, \mathsf{s}).$$

- Let P be the optimal path whose cost is OPT₌(i, v).
 - ▶ If first node on P is w, then $OPT_{=}(i, v) = c_{vw} + OPT_{=}(i 1, w)$.

Alternate Dynamic Programming Formulation

 OPT₌(i, v): minimum cost of a v-t path that uses exactly i edges. Goal is to compute

$$\min_{i=1}^{n-1} \mathsf{OPT}_{=}(\mathsf{i}, \mathsf{s}).$$

- Let P be the optimal path whose cost is OPT₌(i, v).
 - ▶ If first node on P is w, then $OPT_{=}(i, v) = c_{vw} + OPT_{=}(i 1, w)$.

$$\mathsf{OPT}_{=}(\mathsf{i},\,\mathsf{v}) = \min_{\mathsf{w} \in \mathcal{V}} \left(c_{\mathsf{vw}} + \mathsf{OPT}_{=}(\mathsf{i} - \mathsf{1},\,\mathsf{w}) \right)$$

• $OPT_{=}(i, v)$: minimum cost of a v-t path that uses exactly i edges. Goal is to compute

$$\min_{i=1}^{n-1} \mathsf{OPT}_{=}(\mathsf{i}, \mathsf{s}).$$

- Let P be the optimal path whose cost is OPT₌(i, v).
 - ▶ If first node on P is w, then $OPT_{=}(i, v) = c_{vw} + OPT_{=}(i 1, w)$.

$$\mathsf{OPT}_=(\mathsf{i},\,\mathsf{v}) = \min_{\mathsf{w} \in \mathit{V}} \big(c_{\mathsf{vw}} + \mathsf{OPT}_=(\mathsf{i} \, \cdot \, \mathsf{1},\,\mathsf{w}) \big)$$

Compare the two desired solutions:

$$\min_{i=1}^{n-1} \mathsf{OPT}_=(\mathsf{i},\,\mathsf{s}) = \min_{i=1}^{n-1} \left(\, \min_{w \in V} \left(c_{\mathsf{s}w} + \mathsf{OPT}_=(\mathsf{i}\,\text{-}\,1,\,\mathsf{w}) \right) \, \right)$$

$$\mathsf{OPT}(n-1,s) = \min\left(\mathsf{OPT}(n-2,s), \min_{w \in V}\left(c_{sw} + \mathsf{OPT}(n-2,w)\right)\right)$$

T. M. Murali

$$\mathsf{OPT}(i, v) = \min \left(\mathsf{OPT}(i-1, v), \min_{w \in V} \left(c_{vw} + \mathsf{OPT}(i-1, w) \right) \right)$$

```
Shortest-Path(G, s, t)
n = \text{number of nodes in } G
Array M[0 \dots n-1, V]
Define M[0, t] = 0 and M[0, v] = \infty for all other v \in V
For i = 1, \dots, n-1
For v \in V in any order
Compute M[i, v] using the recurrence (6.23)
Endfor
Endfor
Return M[n-1, s]
```

$$\mathsf{OPT}(i, v) = \min \left(\mathsf{OPT}(i-1, v), \min_{w \in V} \left(c_{vw} + \mathsf{OPT}(i-1, w) \right) \right)$$

```
Shortest-Path(G, s, t)
  n = \text{number of nodes in } G
  Array M[0...n-1,V]
  Define M[0,t]=0 and M[0,v]=\infty for all other v \in V
  For i = 1, ..., n - 1
    For v \in V in any order
      Compute M[i, v] using the recurrence (6.23)
    Endfor
  Endfor
  Return M[n-1,s]
```

• Space used is ??. Running time is ??.

Bellman-Ford Algorithm

$$\mathsf{OPT}(i, v) = \min \left(\mathsf{OPT}(i-1, v), \min_{w \in V} \left(c_{vw} + \mathsf{OPT}(i-1, w) \right) \right)$$

```
Shortest-Path(G,s,t)
n= number of nodes in G
Array M[0\dots n-1,V]
Define M[0,t]=0 and M[0,v]=\infty for all other v\in V
For i=1,\dots,n-1
For v\in V in any order
Compute M[i,v] using the recurrence (6.23)
Endfor
Endfor
Return M[n-1,s]
```

- Space used is $O(n^2)$. Running time is $O(n^3)$.
- If shortest path uses k edges, we can recover it in O(kn) time by tracing back through smaller sub-problems.

An Improved Bound on the Running Time

• Suppose *G* has *n* nodes and $m \ll \binom{n}{2}$ edges. Can we demonstrate a better upper bound on the running time?

An Improved Bound on the Running Time

• Suppose G has n nodes and $m \ll \binom{n}{2}$ edges. Can we demonstrate a better upper bound on the running time?

$$M[i,v] = \min \left(M[i-1,v], \min_{w \in V} \left(c_{vw} + M[i-1,w] \right) \right)$$

An Improved Bound on the Running Time

• Suppose *G* has *n* nodes and $m \ll \binom{n}{2}$ edges. Can we demonstrate a better upper bound on the running time?

$$M[i,v] = \min\left(M[i-1,v], \min_{w \in N_v} \left(c_{vw} + M[i-1,w]\right)\right)$$

- w only needs to range over outgoing neighbours N_v of v.
- If $n_{\nu} = |N_{\nu}|$ is the number of outgoing neighbours of ν , then in each round, we spend time equal to

$$\sum_{v \in V} n_v =$$

• Suppose G has n nodes and $m \ll \binom{n}{2}$ edges. Can we demonstrate a better upper bound on the running time?

$$M[i, v] = \min \left(M[i - 1, v], \min_{w \in N_v} \left(c_{vw} + M[i - 1, w] \right) \right)$$

- w only needs to range over outgoing neighbours N_v of v.
- If $n_v = |N_v|$ is the number of outgoing neighbours of v, then in each round, we spend time equal to

$$\sum_{v\in V}n_v=m.$$

• The total running time is O(mn).

Improving the Memory Requirements

$$M[i, v] = \min \left(M[i-1, v], \min_{w \in N_v} \left(c_{vw} + M[i-1, w] \right) \right)$$

• The algorithm uses $O(n^2)$ space to store the array M.

T. M. Murali

March 20, 25, 27, April 1, 2024

$$M[i,v] = \min\left(M[i-1,v], \min_{w \in N_v} \left(c_{vw} + M[i-1,w]\right)\right)$$

- The algorithm uses $O(n^2)$ space to store the array M.
- Observe that M[i, v] depends only on M[i-1, *] and no other indices.

Improving the Memory Requirements

$$M[i, v] = \min \left(M[i-1, v], \min_{w \in N_v} \left(c_{vw} + M[i-1, w] \right) \right)$$

- The algorithm uses $O(n^2)$ space to store the array M.
- Observe that M[i, v] depends only on M[i-1, *] and no other indices.
- Modified algorithm:
 - **1** Maintain two arrays M and M' indexed over V.
 - 2 At the beginning of each iteration, copy M into M'.
 - To update M, use

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

Improving the Memory Requirements

$$M[i,v] = \min\left(M[i-1,v], \min_{w \in N_v} \left(c_{vw} + M[i-1,w]\right)\right)$$

- The algorithm uses $O(n^2)$ space to store the array M.
- Observe that M[i, v] depends only on M[i-1, *] and no other indices.
- Modified algorithm:
 - lacktriangle Maintain two arrays M and M' indexed over V.
 - 2 At the beginning of each iteration, copy M into M'.
 - To update M, use

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

- Claim: at the beginning of iteration i, M stores values of $\mathsf{OPT}(i-1,v)$ for all nodes $v \in V$.
- Space used is O(n).

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

• How can we recover the shortest path that has cost M[v]?

T. M. Murali

March 20, 25, 27, April 1, 2024

$$M[v] = \min\left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w]\right)\right)$$

- How can we recover the shortest path that has cost M[v]?
- For each node v, compute and update f(v), the first node after v in the current shortest path from v to t.
- Updating f(v):

$$M[v] = \min\left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w]\right)\right)$$

- How can we recover the shortest path that has cost M[v]?
- For each node v, compute and update f(v), the first node after v in the current shortest path from v to t.
- Updating f(v): If x is the node that attains the minimum in $\min_{w \in N_{\star}} (c_{vw} + M'[w])$ and $M'[v] > c_{vx} + M'[x]$,

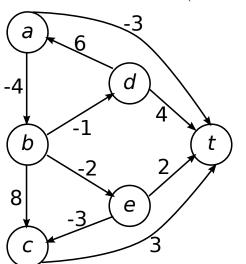
T. M. Murali

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

- How can we recover the shortest path that has cost M[v]?
- For each node v, compute and update f(v), the first node after v in the current shortest path from v to t.
- Updating f(v): If x is the node that attains the minimum in $\min_{w \in N_{\cdot}} (c_{vw} + M'[w])$ and $M'[v] > c_{vx} + M'[x]$, then
 - ightharpoonup set $M[v] = c_{vx} + M'[x]$ and
 - ightharpoonup set f(v) = x.
- At the end, follow f(v) pointers from s to t (and hope for the best).

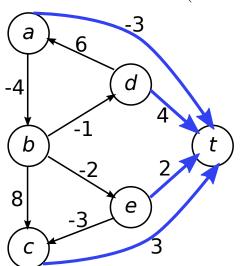
T. M. Murali

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



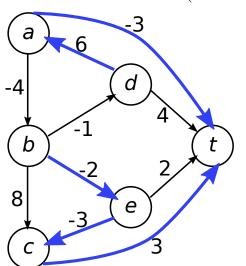
`		/	/			
	0	1	2	3	4	5
t	0	0	0	0	0	0
а	∞					
b	∞					
С	∞					
d	∞					
e	∞					

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



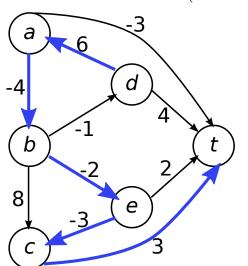
	0	1	_2	3	4	5
t	0	0	0	0	0	0
a	8	-3				
b	8	∞				
C	8	3				
d	8	4				
e	8	2				

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



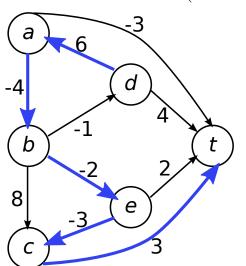
			/			
	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8	-3	-3			
b	8	8	0			
C	8	3	3			
d	8	4	3			
e	8	2	0			

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



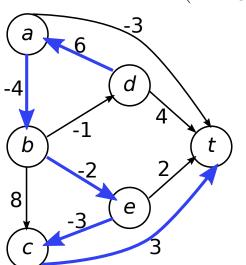
			/			
	0	1	2	3	4	5
t	0	0		0	0	0
a	8	-3	-3	-4		
b	8	8	0	-2		
c	8	3	3	3		
d	8	4	3	3		
e	8	2	0	0		

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



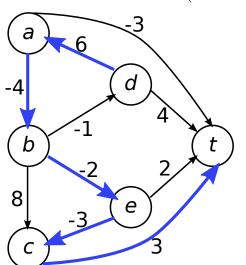
		/			
0	1	2	3	4	5
				0	0
				-6	
8	8	0	-2	-2	
8	3	3	3	3	
8	4	3	3	2	
8	2	0	0	0	
	8 8 8 8	⊗ -3∞ ∞∞ 3∞ 4	0 0 0 ∞ -3 -3 ∞ ∞ 0 ∞ 3 3	0 0 0 0 ∞ -3 -3 -4 ∞ ∞ 0 -2 ∞ 3 3 3 ∞ 4 3 3	0 0 0 0 ∞ -3 -3 -4 -6 ∞ ∞ 0 -2 -2 ∞ 3 3 3 ∞ 4 3 3 2

$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



		/			
0	1	2	3	4	5
0	0	0	0	0	0
8	8	0	-2	-2	-2
8	3	3	3	3	3
8	4	3	3	2	0
8	2	0	0	0	0
	8 8 8 8	0 0 8 -3 8 8 8 3 8 4	0 0 0 ∞ -3 -3 ∞ ∞ 0 ∞ 3 3 ∞ 4 3	0 0 0 0 ∞ -3 -3 -4 ∞ ∞ 0 -2 ∞ 3 3 3 ∞ 4 3 3	0 0 0 0 0 0 ∞ -3 -3 -4 -6 ∞ ∞ 0 -2 -2 ∞ 3 3 3 3

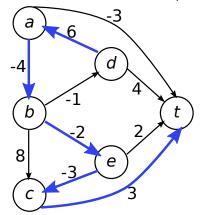
$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$



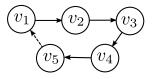
			/			
	0	1	2	3	4	5
t	0	0	0	0	0	0
			-3			-6
b	8	8	0	-2	-2	-2
c	8	3	3	3	3	3
	8			3	2	0
e	8	2	0	0	0	0

Computing the Shortest Path: Correctness

- Pointer graph P(V, F): each edge in F is (v, f(v)).
 - ► Can P have cycles?
 - ▶ Is there a path from s to t in P?
 - Can there be multiple paths s to t in P?
 - Which of these is the shortest path?

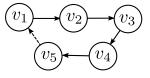


	0	1	2	3	4	5
t	0	0	0	0	0	0
a	8	-3	-3	-4	-6	-6
b	8	8	0	-2	-2	-2
c	8	3	3	3	3	3
d	8	4	3	3	2	0
e	8	2	0	0	0	0



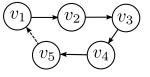
$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

• Claim: If P has a cycle C, then C has negative cost.



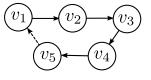
$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

- Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.



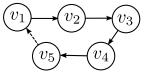
$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

- Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], ▶ Dynamic Programming: Shortest Paths: M[w] and M'[w]

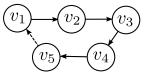


$$M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$$

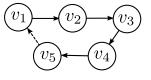
- Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.



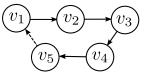
- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added.
 - What is the situation just before this addition?



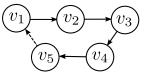
- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added.
 - ▶ What is the situation just before this addition?
 - ▶ $M[v_i] M[v_{i+1}] \ge c_{v_i v_{i+1}}$, for all $1 \le i < k 1$.



- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added.
 - ▶ What is the situation just before this addition?
 - ▶ $M[v_i] M[v_{i+1}] \ge c_{v_i v_{i+1}}$, for all $1 \le i < k-1$.
 - ▶ Dynamic Programming: Shortest Paths: Bound on $M[v_k] M[v_1]$

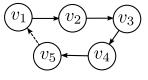


- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added.
 - ▶ What is the situation just before this addition?
 - ▶ $M[v_i] M[v_{i+1}] \ge c_{v_i v_{i+1}}$, for all $1 \le i < k 1$.
 - $M[v_k] M[v_1] > c_{v_k v_1}$



- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added.
 - ▶ What is the situation just before this addition?
 - ▶ $M[v_i] M[v_{i+1}] \ge c_{v_i v_{i+1}}$, for all $1 \le i < k 1$.
 - $M[v_k] M[v_1] > c_{v_k v_1}$.
 - Adding all these inequalities, $0 > \sum_{i=1}^{k-1} c_{v_i v_{i+1}} + c_{v_k v_1} = \text{cost of } C$.

T. M. Murali



- $M[v] = \min \left(M'[v], \min_{w \in N_v} \left(c_{vw} + M'[w] \right) \right)$
 - Claim: If P has a cycle C, then C has negative cost.
 - ▶ Suppose we set f(v) = w. At this instant, $M[v] = c_{vw} + M'[w]$.
 - ▶ Comparing M[w] and M'[w], we know that $M[w] \leq M'[w]$.
 - ▶ Between this assignment and the assignment of f(v) to some other node, M[w] may itself further decrease. Hence, $M[v] \ge c_{vw} + M[w]$, in general.
 - Let $v_1, v_2, \ldots v_k$ be the nodes in C and assume that (v_k, v_1) is the last edge to have been added
 - ▶ What is the situation just before this addition?
 - ▶ $M[v_i] M[v_{i+1}] \ge c_{v_i v_{i+1}}$, for all $1 \le i < k 1$.
 - $M[v_k] M[v_1] > c_{v_k v_1}$.
 - Adding all these inequalities, $0 > \sum_{i=1}^{k-1} c_{v_i v_{i+1}} + c_{v_k v_1} = \text{cost of } C$.
 - Corollary: if G has no negative cycles that P does not either.

T. M. Murali

Computing the Shortest Path: Paths in *P*

- Let *P* be the pointer graph upon termination of the algorithm.
- Consider the path P_v in P obtained by following the pointers from v to $f(v) = v_1$, to $f(v_1) = v_2$, and so on.

Computing the Shortest Path: Paths in *P*

- Let *P* be the pointer graph upon termination of the algorithm.
- Consider the path P_v in P obtained by following the pointers from v to $f(v) = v_1$, to $f(v_1) = v_2$, and so on.
- Claim: P_{ν} terminates at t. Dynamic Programming: Shortest Paths: Last node of P_{ν}

- Let *P* be the pointer graph upon termination of the algorithm.
- Consider the path P_v in P obtained by following the pointers from v to $f(v) = v_1$, to $f(v_1) = v_2$, and so on.

Computing the Shortest Path: Paths in P

- Claim: P_v terminates at t.
- Claim: P_v is the shortest path in G from v to t.

Bellman-Ford Algorithm: One Array

$$M[v] = \min \left(M[v], \min_{w \in N_v} \left(c_{vw} + M[w] \right) \right)$$

• We can prove algorithm's correctness in this case as well.

T. M. Murali

March 20, 25, 27, April 1, 2024

Bellman-Ford Algorithm: Early Termination

$$M[v] = \min \left(M[v], \min_{w \in N_v} \left(c_{vw} + M[w] \right) \right)$$

$$S \qquad v_2 \qquad v_3$$

$$t \qquad v_4$$

• In general, after i iterations, the path whose length is M[v] may have many more than i edges.

T. M. Murali

$$M[v] = \min\left(M[v], \min_{w \in N_v} (c_{vw} + M[w])\right)$$

$$S \qquad V_2 \qquad V_3$$

$$t \qquad V_4$$

- In general, after i iterations, the path whose length is M[v] may have many more than i edges.
- Early termination: If M does not change after processing all the nodes, we have computed all the shortest paths to t.

T. M. Murali