Coping with NP-Completeness

T. M. Murali

April 29, May 1, 2024

Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)

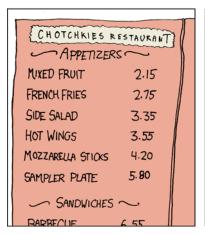
- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

"I can't find an efficient algorithm, but neither can all these famous people."

(Garey and Johnson, Computers and Intractability)

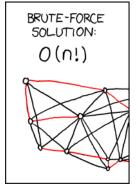
• These problems come up in real life.

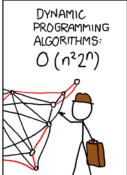
MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



- These problems come up in real life.
- \mathcal{NP} -Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?

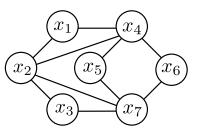
- These problems come up in real life.
- \mathcal{NP} -Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?

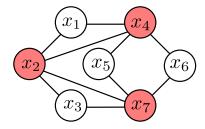




- These problems come up in real life.
- \mathcal{NP} -Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?
 - ▶ Develop algorithms that are exponential in one parameter in the problem.
 - ► Consider special cases of the input, e.g., graphs that "look like" trees.
 - Develop algorithms that can provably compute a solution close to the optimal.

Vertex Cover Problem





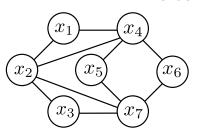
Vertex cover.

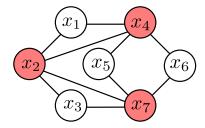
INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size *k*.
- What is the running time of this algorithm?

Vertex Cover Problem





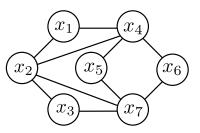
Vertex cover.

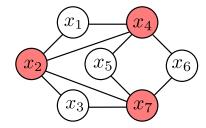
INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.

April 29, May 1, 2024 Coping with NP-Completeness





Vertex cover.

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

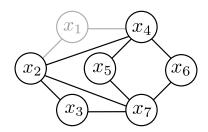
- The problem has two parameters: k and n, the number of nodes in G.
- Brute-force algorithm: test every subset of nodes of size k.
- What is the running time of this algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O(2^k n)$?

• Intution: if a graph has a small vertex cover, it cannot have too many edges.

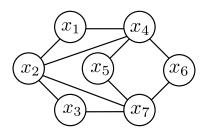
- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G
 has at most
 Coping with NP-Completeness: Small Vertex Cover: number of edges
 edges.

- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.

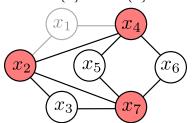
- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.

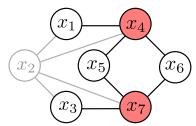


- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.



- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G \{u\}$ or $G \{v\}$ has a vertex cover of size at most k 1.





If G contains $> k \mid V \mid$ edges, then it has no k-node vertex cover

To search for a k-node vertex cover in G: If G contains no edges, then the empty set is a vertex cover

Else let e = (u, v) be an edge of G

Recursively check if either of $G - \{u\}$ or $G - \{v\}$

has a vertex cover of size k-1

If neither of them does, then G has no k-node vertex cover Else, one of them (say, $G-\{u\}$) has a (k-1)-node vertex cover TIn this case, $T \cup \{u\}$ is a k-node vertex cover of G

Endif

Endif

Analysing the Vertex Cover Algorithm

Develop a recurrence relation for the algorithm with parameters

Small Vertex Covers

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.

April 29, May 1, 2024 Coping with NP-Completeness

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \le cn$.

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \le cn$.
- T(n,k) < 2T(n,k-1) + ckn.
 - We need O(kn) time to count the number of edges.

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \le cn$.
- T(n,k) < 2T(n,k-1) + ckn.
 - We need O(kn) time to count the number of edges.
- Claim: $T(n,k) = O(2^k kn)$.

Approximation Algorithms

- \bullet Methods for optimisation versions of $\mathcal{NP}\text{-}\mathsf{Complete}$ problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution

EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis) 1: $C \leftarrow \emptyset$ { C will be the vertex cover}

2: while G has at least one edge do

3: Let (u, v) be any edge in G

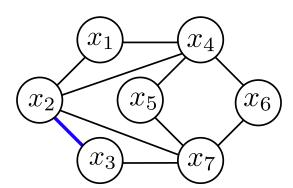
> {Update C using u and/or v} {Update G using u and/or v}

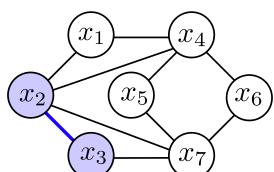
5: 6:

4:

7: end while

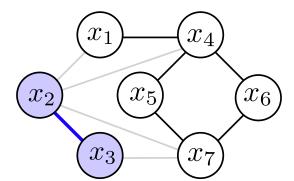
8: return C





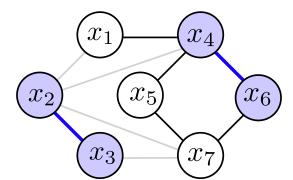
EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ { C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add μ and ν to C
- $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C



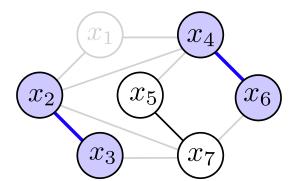
EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ { C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add μ and ν to C
- $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C

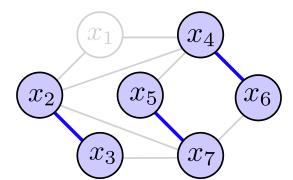


EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ { C will be the vertex cover}
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add μ and ν to C
- $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
- 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
- 7: end while
- 8: return C



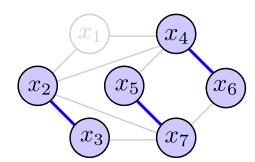
- EASYVERTEXCOVER(G) (Gavril, 1974; Yannakakis) 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$ { C will be the vertex cover}
 - 2: while G has at least one edge do
 - 3: Let (u, v) be any edge in G
 - 4: Add μ and ν to C
 - $G \leftarrow G \{u, v\}$ {Delete u, v, and all incident edges from G.}
 - 6: Add (u, v) to E' {Keep track of edges for bookkeeping.}
 - 7: end while
 - 8: return C



EasyVertexCover(G)

1:
$$C \leftarrow \emptyset$$
, $E' \leftarrow \emptyset$

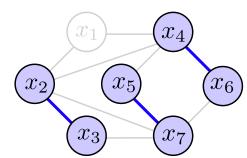
- 2: **while** *G* has at least one edge **do**
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is



Analysis of EasyVertexCover

EasyVertexCover(G)

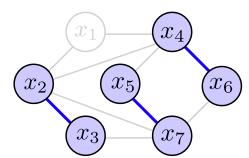
- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: **while** *G* has at least one edge **do**
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.



Analysis of EasyVertexCover

EasyVertexCover(G)

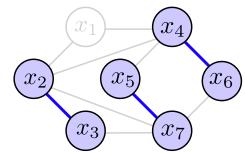
- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: **while** *G* has at least one edge **do**
 - 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.



Analysis of EasyVertexCover

EasyVertexCover(G)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.



EasyVertexCover(G)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: **while** *G* has at least one edge **do**
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is

Coping with NP-Completeness: Approximate Vertex Cover: Lower Bound

 (x_1) (x_4) (x_5) (x_6)

EasyVertexCover(G)

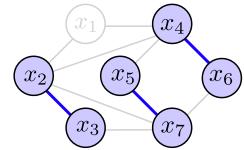
- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
 - Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.

April 29, May 1, 2024 Coping with NP-Completeness

Analysis of EasyVertexCover

EasyVertexCover(G)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: **while** *G* has at least one edge **do**
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| < 2c^*$



Analysis of EasyVertexCover

EasyVertexCover(G)

- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: while G has at least one edge do
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'

7: end while

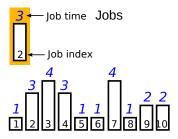
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| \le 2c^*$
 - No approximation algorithm with a factor better than $\sqrt{2} \varepsilon$ is possible unless $\mathcal{P} = \mathcal{N}\mathcal{P}$ (Dinur *et al.*, 2018).

Analysis of EasyVertexCover

EasyVertexCover(G)

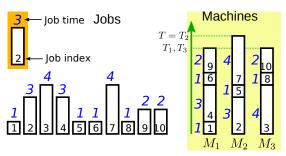
- 1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
- 2: **while** *G* has at least one edge **do**
- 3: Let (u, v) be any edge in G
- 4: Add u and v to C
- 5: $G \leftarrow G \{u, v\}$
- 6: Add (u, v) to E'
- 7: end while
- 8: return C
 - Running time is linear in the size of the graph.
 - Claim: C is a vertex cover.
 - Claim: No two edges in E' can be covered by the same node.
 - Claim: The size c^* of the smallest vertex cover is at least |E'|.
 - Claim: $|C| = 2|E'| < 2c^*$
 - No approximation algorithm with a factor better than $\sqrt{2} \varepsilon$ is possible unless $\mathcal{P} = \mathcal{NP}$ (Dinur *et al.*, 2018).
 - No approximation algorithm with a factor better than 2 is possible if the "unique games conjecture" is true (Khot and Regev, 2008).

Load Balancing Problem



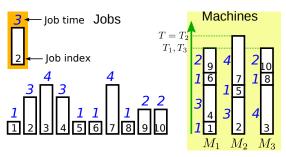
- Given set of m machines $M_1, M_2, \dots M_m$.
- Given a set of n jobs: job j has processing time t_i .
- Assign each job to one machine so that the total time spent is minimised.

Load Balancing Problem



- Given set of m machines $M_1, M_2, \dots M_m$.
- Given a set of n jobs: job j has processing time t_i .
- Assign each job to one machine so that the total time spent is minimised.
- Let A(i) be the set of jobs assigned to machine M_i .
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.

Load Balancing Problem



- Given set of m machines $M_1, M_2, \dots M_m$.
- Given a set of n jobs: job j has processing time t_i .
- Assign each job to one machine so that the total time spent is minimised.
- Let A(i) be the set of jobs assigned to machine M_i .
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
- Minimising makespan is \mathcal{NP} -Complete.

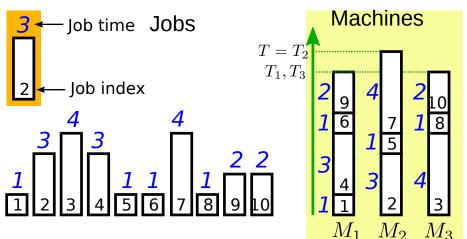
- Adopt a greedy approach (Graham, 1966).
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

```
Greedy-Balance:
```

```
Start with no jobs assigned  \begin{array}{l} \text{Set } T_i = 0 \text{ and } A(i) = \emptyset \text{ for all machines } M_i \\ \text{For } j = 1, \dots, n \\ \text{Let } M_i \text{ be a machine that achieves the minimum } \min_k T_k \\ \text{Assign job } j \text{ to machine } M_i \\ \text{Set } A(i) \leftarrow A(i) \cup \{j\} \\ \text{Set } T_i \leftarrow T_i + t_j \\ \end{array}
```

EndFor

Example of Greedy-Balance Algorithm



Lower Bounds on the Optimal Makespan

ullet We need a lower bound on the optimum makespan \mathcal{T}^* .

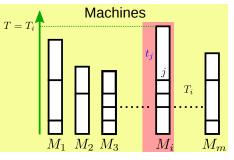
► Coping with NP-Completeness: Greedy Balance: Lower Bounds

Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^* .
- Coping with NP-Completeness: Greedy Balance: Lower Bounds
- The two bounds below will suffice:

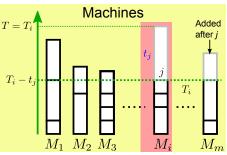
$$T^* \geq \frac{1}{m} \sum_j t_j$$

$$T^* \geq \max_j t_j$$



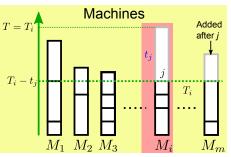
• Claim: Computed makespan $T \leq 2T^*$.

Analysing Greedy-Balance



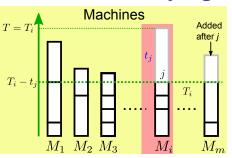
- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T
 and j be the last job placed on M_i.
- What was the situation just before placing this job?

Analysing Greedy-Balance

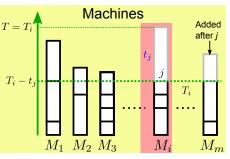


- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T
 and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T t_j$.
- For every machine M_k ,

▶ Coping with NP-Completeness: Greedy Balance: Comparing to job



- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T
 and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T t_j$.
- For every machine M_k , load $T_k \geq T t_i$.



- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T
 and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T t_j$.
- For every machine M_k , load $T_k \geq T t_j$.

$$\sum_{k} T_{k} \geq m(T - t_{j})$$
, where k ranges over all machines

$$\sum_{j} t_{j} \geq m(T - t_{j})$$
, where j ranges over all jobs

$$T - t_j \le 1/m \sum_j t_j \le T^*$$

$$T \leq 2T^*$$
, since $t_i \leq T^*$

Improving the Bound

• It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?

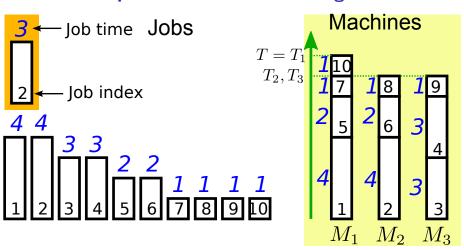
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time? (Graham, 1969)

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, \ldots, n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{j\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, \ldots, n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{i\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

• This algorithm assigns the first m jobs to m distinct machines.

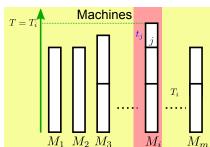


- ullet Claim: if there are fewer than m jobs, algorithm is optimal.
- ullet Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.

- ullet Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - ▶ Consider *any* assignment of these m+1 jobs to machines.
 - ▶ Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - ▶ This machine will have load at least $2t_{m+1}$.

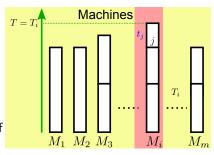
- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* > 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - \triangleright Consider any assignment of these m+1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $> t_{m+1}$.
 - ▶ This machine will have load at least 2t_{m+1}.
- Claim: $T < 3T^*/2$.

- ullet Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - ▶ Consider any assignment of these m+1 jobs to machines.
 - ▶ Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - ▶ This machine will have load at least $2t_{m+1}$.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i . (M_i has at least two jobs; otherwise, solution is optimal.)



- ullet Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - ▶ Consider any assignment of these m+1 jobs to machines.
 - ▶ Some machine must be assigned two jobs, each with processing time $\geq t_{m+1}$.
 - ▶ This machine will have load at least $2t_{m+1}$.
- Claim: $T \le 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i . (M_i has at least two jobs; otherwise, solution is optimal.)

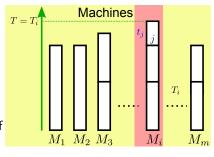
$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$



- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - \triangleright Consider any assignment of these m+1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $> t_{m+1}$.
 - ▶ This machine will have load at least $2t_{m+1}$.
- Claim: $T < 3T^*/2$.
- Let M_i be the machine whose load is Tand j be the last job placed on M_i . (M_i has at least two jobs; otherwise, solution is optimal.)

$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T-t_j \leq T^*$, Greedy-Balance proof
 $T \leq 3T^*/2$

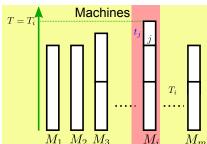
• Better bound: $T \le 4T^*/3$ (Graham, 1969).



- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - ▶ Consider only the first m+1 jobs in sorted order.
 - ▶ Consider any assignment of these m+1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time $> t_{m+1}$.
 - ▶ This machine will have load at least 2t_{m+1}.
- Claim: $T < 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i . (M_i has at least two jobs; otherwise, solution is optimal.)

$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$

- Better bound: $T \le 4T^*/3$ (Graham, 1969).
 - Polynomial-time approximation scheme: for every $\varepsilon > 0$, compute solution with makespan $T < (1+\varepsilon)T^*$ in $O((n/\varepsilon)^{(1/\varepsilon^2)})$ time (Hochbaum and Shmoys, 1987)



Knapsack

Partition

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n .

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

The Knapsack Problem

PARTITION

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n .

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised

subject to the constraint $\sum_{i \in S} w_i \leq W$.

The Knapsack Problem

Partition

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n .

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset *S* of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

The Knapsack Problem

Partition

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n .

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i = \sum_{i \notin S} w_i$.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset *S* of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- 3D Matching \leq_P Partition \leq_P Subset Sum \leq_P Knapsack
- All problems have dynamic programming algorithms with pseudo-polynomial running times.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset *S* of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w_1, w_2, \ldots, w_n and a target W. **SOLUTION:** A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

• OPT(i, w) is the largest sum possible using only the first i numbers with target w.

Dynamic Programming for Subset Sum

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

SOLUTION: A subset S of numbers such that $\sum_{i \in S} w_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

• OPT(i, w) is the largest sum possible using only the first i numbers with target w.

$$\mathsf{OPT}(i, w) = \mathsf{OPT}(i-1, w), \qquad i > 0, w_i > w$$
 $\mathsf{OPT}(i, w) = \max \big(\mathsf{OPT}(i-1, w), w_i + \mathsf{OPT}(i-1, w-w_i) \big), \qquad i > 0, w_i \leq w$
 $\mathsf{OPT}(0, w) = 0$

• Running time is O(nW).

Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution with total value > v that uses only the first i items.
- What are the ranges of i and v?

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution with total value > v that uses only the first i items.
- What are the ranges of *i* and *v*?
 - i ranges between 0 and n, the number of items.
 - Given i, v ranges between 0 and $\sum_{1 \le i \le i} v_i$.
 - ▶ Largest value of v is $\sum_{1 \le i \le n} v_i \le nv^*$, where $v^* = \max_i v_i$.
- The solution we want is

Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution with total value > v that uses only the first i items.
- What are the ranges of *i* and *v*?
 - i ranges between 0 and n, the number of items.
 - Given i, v ranges between 0 and $\sum_{1 \le i \le i} v_i$.
 - ▶ Largest value of v is $\sum_{1 < j < n} v_j \le nv^{\overline{*}}$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \leq W$.

Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset S of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- Can generalize the dynamic program for Subset Sum.
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution with total value > v that uses only the first i items.
- What are the ranges of i and v?
 - i ranges between 0 and n, the number of items.
 - Given i, v ranges between 0 and $\sum_{1 \le i \le i} v_i$.
 - ▶ Largest value of v is $\sum_{1 < j < n} v_j \le nv^{\overline{*}}$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \leq W$.

$$\mathsf{OPT}(i,0) = 0$$
 for every $i \ge 1$ $\mathsf{OPT}(i,v) = \mathsf{max}\left(\mathsf{OPT}(i-1,v), w_i + \mathsf{OPT}(i-1,v-v_i)\right),$ otherwise

Dynamic Programming for Knapsack

Knapsack

INSTANCE: A set of n elements, with each element i having a weight w_i and a value v_i , and a knapsack capacity W.

SOLUTION: A subset *S* of items such that $\sum_{i \in S} v_i$ is maximised subject to the constraint $\sum_{i \in S} w_i \leq W$.

- ullet Can generalize the dynamic program for Subset Sum .
- But we will develop a different dynamic program that will be useful later.
- OPT(i, v) is the smallest knapsack weight so that there is a solution with total value $\geq v$ that uses only the first i items.
- What are the ranges of i and v?
 - ▶ *i* ranges between 0 and *n*, the number of items.
 - ▶ Given *i*, *v* ranges between 0 and $\sum_{1 < i < i} v_i$.
 - ▶ Largest value of v is $\sum_{1 < j < n} v_j \le nv^*$, where $v^* = \max_i v_i$.
- The solution we want is the largest value v such that $OPT(n, v) \leq W$.

$$\mathsf{OPT}(i,0) = 0$$
 for every $i \geq 1$

$$\mathsf{OPT}(i, v) = \mathsf{max}\left(\mathsf{OPT}(i-1, v), w_i + \mathsf{OPT}(i-1, v-v_i)\right),$$
 otherwise

- Can find items in the solution by tracing back.
- Running time is $O(n^2v^*)$, which is pseudo-polynomial in the input size.

Intuition Underlying Approximation Algorithm

• What is the running time if all values are the same?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers?

Intuition Underlying Approximation Algorithm

- What is the running time if all values are the same? Polynomial.
- What is the running time if all values are small integers? Also polynomial.
- Idea:
 - Round and scale all the values to lie in a smaller range.
 - Run the dynamic programming algorithm with the modified new values.
 - Return the items in this optimal solution.
 - Prove that the value of this solution is not much smaller than the true optimum.

Polynomial-Time Approximation Scheme for Knapsack

- $0<\varepsilon<1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2n}$.
- For every item *i*, set

$$\tilde{\mathsf{v}}_i = \left\lceil \frac{\mathsf{v}_i}{\theta} \right
ceil \theta, \qquad \hat{\mathsf{v}}_i = \left\lceil \frac{\mathsf{v}_i}{\theta} \right\rceil$$

- $0 < \varepsilon < 1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2\pi}$.
- For every item i, set

$$\tilde{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil \theta, \qquad \hat{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil$$

 $Knapsack-Approx(\varepsilon)$

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set *S* of items found.

- $0 < \varepsilon < 1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2\pi}$.
- For every item i, set

$$\tilde{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil \theta, \qquad \hat{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil$$

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set *S* of items found.

• What is the running time of Knapsack-Approx?

- $0 < \varepsilon < 1$ is a "precision" parameter; assume that $1/\varepsilon$ is an integer.
- Scaling factor $\theta = \frac{\varepsilon v^*}{2\pi}$.
- For every item i, set

$$\tilde{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \theta, \qquad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$$

Knapsack-Approx(ε)

Solve the Knapsack problem using the dynamic program with the values \hat{v}_i . Return the set *S* of items found.

- What is the running time of Knapsack-Approx? $O(n^2 \max_i \hat{v_i}) = O(n^2 v^* / \theta) = O(n^3 / \varepsilon).$
- We need to show that the value of the solution returned by Knapsack-Approx is good.

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.

April 29, May 1, 2024 Coping with NP-Completeness

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \le \sum_{i \in S} v_i$.

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \le (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i ,

$$\sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i ,

$$\sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i$$

• Since for each $i, v_i < \tilde{v_i} < v_i + \theta$.

$$\sum_{j \in S^*} v_j \le \sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i \le \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i ,

$$\sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i$$

• Since for each $i, v_i < \tilde{v_i} < v_i + \theta$.

$$\sum_{j \in S^*} v_j \le \sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i \le \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

• Apply argument to S^* containing only the item with largest value:

$$v^* \le \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \le \sum_{i \in S} v_i + \frac{v^*}{2}$$
, i.e., $v^* \le 2 \sum_{i \in S} v_i$.

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{i \in S^*} w_i \leq W$.
- Claim: $\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values \tilde{v}_i ,

$$\sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i$$

• Since for each $i, v_i < \tilde{v_i} < v_i + \theta$.

$$\sum_{j \in S^*} v_j \le \sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i \le \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

• Apply argument to S^* containing only the item with largest value: $v^* \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \leq 2 \sum_{i \in S} v_i$.

Therefore.

$$\sum_{j \in S^*} v_j \le \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \le (1 + \varepsilon) \sum_{i \in S} v_i$$

- Let S be the solution computed by Knapsack-Approx.
- Let S^* be any other solution satisfying $\sum_{j \in S^*} w_j \leq W$.
- Claim: $\sum_{i \in S^*} v_i \le (1 + \varepsilon) \sum_{i \in S} v_i$. Polynomial-time approximation scheme.
- Since Knapsack-Approx is optimal for the values $\tilde{v_i}$,

$$\sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i$$

• Since for each i, $v_i < \tilde{v_i} < v_i + \theta$,

$$\sum_{j \in S^*} v_j \le \sum_{j \in S^*} \tilde{v}_j \le \sum_{i \in S} \tilde{v}_i \le \sum_{i \in S} v_i + n\theta = \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2}$$

- Apply argument to S^* containing only the item with largest value: $v^* \le \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \le \sum_{i \in S} v_i + \frac{v^*}{2}$, i.e., $v^* \le 2 \sum_{i \in S} v_i$.
- Therefore,

$$\sum_{j \in S^*} v_j \leq \sum_{i \in S} v_i + \frac{\varepsilon v^*}{2} \leq (1 + \varepsilon) \sum_{i \in S} v_i$$

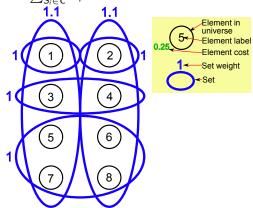
• Can Improve running time to $O(n \log_2 \frac{1}{\epsilon} + \frac{1}{\epsilon^4})$ (Lawler, 1979).

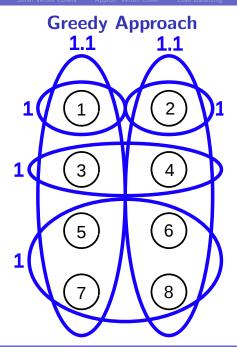
Set Cover

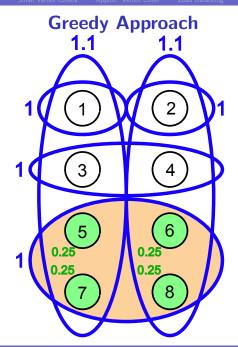
Set Cover.

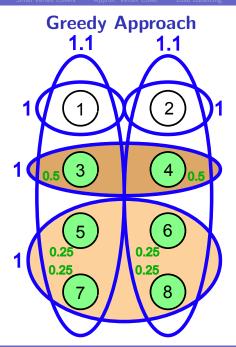
INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w.

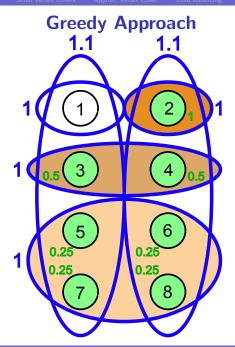
SOLUTION: A collection C of sets in the collection such that $\bigcup_{S:\in C} S_i = U$ and $\sum_{S:\in C} w_i$ is minimised.

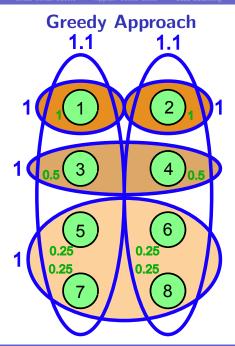












Greedy-Set-Cover

• To get a greedy algorithm, in what order should we process the sets?

Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:

Start with R = U and no sets selected

While $R \neq \emptyset$

Select set S_i that minimizes $w_i/|S_i \cap R|$

Delete set S_i from R

EndWhile

Return the selected sets

Set Cover Problem

- Greedy algorithm achieves an approximation ratio of $H(d^*)$ (Johnson 1974, Lovász 1975, Chvatal 1979).
 - d* is the size of the largest set in the collection
 - ► The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

Set Cover Problem

- Greedy algorithm achieves an approximation ratio of $H(d^*)$ (Johnson 1974, Lovász 1975, Chvatal 1979).
 - d* is the size of the largest set in the collection
 - The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

• No polynomial time algorithm can achieve an approximation bound better than $(1 - \Omega(1)) \ln n$ times optimal unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Steurer, 2014)

• General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).

- General case: Cannot be approximated within any polynomial time computable function unless $\mathcal{P} = \mathcal{NP}$ (Sahni, Gonzalez, 1976).
- Metric TSP (distances are symmetric, positive, satisfy triangle inequality): 3/2-factor approximation algorithm (Christofides, 1976), innapproximable to better than 123/122 ratio unless $\mathcal{P} = \mathcal{NP}$ (Karpinski, Lampis, Schmied, 2013).
- 1-2 TSP: 8/7 approximation factor (Berman, Karpinski, 2006).
- Euclidean TSP (distances defined by points in d dimensions): PTAS in $O(n(\log n)^{1/\varepsilon})$ time (Arora, 1997; Mithcell, 1999) (second algorithm is slower).

 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0?

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n}\operatorname{poly}(n))$ time.

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n}\operatorname{poly}(n))$ time.
- Edit distance (sequence alighment) between two strings of length n:

- 3-SUM: Given a set of n numbers, are there three elements in it whose sum is 0? Can be solved in $O(n^2)$ time.
- Many simple problems are quadratic-time reducible to 3-SUM, e.g., Given n lines in the plane, are any three concurrent?
- Conjecture: Any algorithm for this problem requires $n^{2-o(1)}$ time.
- All pairs shortest paths: Any algorithm for this problem requires $n^{3-o(1)}$ time.
- Strongly exponential time hypothesis (SETH): For every $\varepsilon > 0$, there exists an integer k such that k-SAT on n variables cannot be solved in $O(2^{(1-\varepsilon)n}\operatorname{poly}(n))$ time.
- Edit distance (sequence alighment) between two strings of length n: If it can be computed in $O(n^{2-\delta})$ time (for some constant $\delta >$), then SAT with nvariables and m clauses can be solved in $m^{O(1)}2^{(1-\varepsilon)n}$ time, for some $\varepsilon>0$ (Backurs, Indyk, 2015).