CS 5854: PathLinker

Automated Reconstruction of Human Signaling Networks
T. M. Murali

January 30, February 1, 6, 2023

Wnt Pathway

Wnt Pathway

Baron and Kneissel. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med., 2013.

Wnt Signaling in a Pathway Database

0431034416
(c) Kanehisa Laboratones

Wnt Signaling in a Pathway Database

Signaling Pathways as Directed Graphs

Bidirected
Physical
Interactions

Wnt (Fzd)

GSK

Signaling Pathways as Directed Graphs

Signaling Pathways as Directed Graphs

Reconstructing Signaling Pathways

Human protein-protein interaction network
All known interactions among human proteins

Reconstructing Signaling Pathways

A pathway is a subgraph of the interaction network

Reconstructing Signaling Pathways

Question: Can we reconstruct the pathway given only receptors and transcriptional factors?

Reconstructing Signaling Pathways

Proposed pathway reconstruction

Automated Reconstruction of Signaling Pathways

- Developed PathLinker to reconstruct proteins and interactions
- Systematically evaluated PathLinker and other algorithms on human signaling pathways from the NetPath and KEGG databases
"Pathways on Demand: Automatic Reconstruction of Human Signaling Pathways," Ritz et al., Systems Biology and Applications, a Nature partner journal, 2, 16002, 2016.

Automated Reconstruction of Signaling Pathways

- Developed PathLinker to reconstruct proteins and interactions
- Systematically evaluated PathLinker and other algorithms on human signaling pathways from the NetPath and KEGG databases
"Pathways on Demand: Automatic Reconstruction of Human Signaling Pathways," Ritz et al., Systems Biology and Applications, a Nature partner journal, 2, 16002, 2016.

Evaluation of Reconstructed Pathways

Curated Pathway

Evaluation of Reconstructed Pathways

Curated Pathway and Proposed Reconstruction

Evaluation of Reconstructed Pathways

Curated Pathway and Proposed Reconstruction

Evaluation of Reconstructed Pathways

Recall:

$$
r_{i}=\frac{\text { true positives up to } i}{|P|}
$$

Precision:

$$
p_{i}=\frac{\text { true positives up to } i}{i}
$$

Evaluation of Reconstructed Pathways

Recall:

$$
r_{i}=\frac{\text { true positives up to } i}{|P|}
$$

Precision:

$$
p_{i}=\frac{\text { true positives up to } i}{i}
$$

Evaluating Multiple Reconstructions

Pathway A

1 ... 1

Pathway C

Pathway D

ABCCDAAABBBDDDCCDDB...

Complete Pipeline

Inputs for Pathway Reconstruction

Protein-Protein Interactome

- 12 K nodes and 152 K directed edges
- 61 K physical interactions ${ }^{1-4}$ BIND, DIP, InnateDB, IntAct, MINT, MatrixDB, Reactome, NetPath, KEGG, SPIKE
- 30K signaling interactions ${ }^{2-4}$ NetPath, KEGG, SPIKE

[^0]
Inputs for Pathway Reconstruction

Protein-Protein Interactome

- 12 K nodes and 152 K directed edges
- 61K physical interactions ${ }^{1-4}$ BIND, DIP, InnateDB, IntAct, MINT, MatrixDB, Reactome, NetPath, KEGG, SPIKE
- 30K signaling interactions ${ }^{2-4}$ NetPath, KEGG, SPIKE

Signaling Pathways from NetPath ${ }^{2}$

- 15 immune and cancer pathways

- List of NetPath Pathways

2,124 Receptors ${ }^{5}$

2,286 Transcriptional Regulators ${ }^{6,7}$

${ }^{1}$ Aranda et al., PSICQUIC and PSISSCORE: assessing and scoring molecular interactions. Nature Methods, 2011.
${ }^{2}$ Kandasmy et al., NetPath: a public resource of curated signaling transduction pathways. Genome Biology, 2010.
${ }^{3}$ Kanehisa et al., KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 2012.
${ }_{5}^{4}$ Paz et al., SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Research, 2009.
${ }^{5}$ Almen et al., Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biology, 2009.
${ }^{6}$ Ravasi et al., An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 2010.
${ }^{7}$ Vaquerizas et al., A census of human transcription factors; function, expression and evolution. Nature Review Genetics, 2009

Results

Steffen et al., Automated modelling of signal transduction networks. BMC Bioinformatics, 2002.

Results

Yeger-Lotem et al., Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nature Genetics, 2009.

Results

Yosef et al., ANAT: A tool for constructing and analyzing functional protein networks. Science Signaling, 2011.
Tuncbag et al., Simultaneous reconstruction of multiple signaling pathways via the prize-collecting
Steiner forest problem. Journal of Computational Biology, 2013.

Results

Ingenuity Pathway Analysis. IPA Network Generation Algorithm. White Paper, 2005.

Results

Page et al., The PageRank citation ranking: Bringing order to the web. Technical Report, 1999.

Results

Yen. Finding the k shortest loopless paths in a network. Management Science, 1971.
This paper.

Evaluation of Reconstructed Pathways

Ranked
 Interactions

Recall:

$$
r_{i}=\frac{\text { true positives up to } i}{|P|}
$$

Precision:

$$
p_{i}=\frac{\text { true positives up to } i}{i}
$$

Evaluation of Reconstructed Pathways

Recall:

$$
r_{i}=\frac{\text { true positives up to } i}{|P|}
$$

Precision:

$$
p_{i}=\frac{\text { true positives up to } i}{i}
$$

Ignore Pathway-Adjacent Negatives

Why does PathLinker improve over other methods?

Why does PathLinker improve over other methods?

Why does PathLinker improve over other methods?

Why does PathLinker improve over other methods?

Algorithms Compared

Abbreviation	Algorithm Type
SHORTESTPATHS	Shortest paths from every receptor to every TR
PATHLINKER	k shortest paths from any receptor to any TR
RWR	Random walk with restarts (aka PageRank)
RESPONSENET	Network flow
ANAT	Tradeoff between shortest paths and Steiner trees
PCSF	Prize-Collecting Steiner Forest Ingenuity Pathway Analyzer: grow subnetworks greedily
BOATIEBUILDER	Approximation to the Steiner tree connecting receptors and TRs

Algorithms Compared

Abbreviation	Algorithm Type
ShortestPaths	Shortest paths from every receptor to every TR
PATHLINKER	k shortest paths from any receptor to any TR
RWR	Random walk with restarts (aka PageRank)
RESPONSENET	Network flow
ANAT	Tradeoff between shortest paths and Steiner trees
PCSF	Prize-Collecting Steiner Forest Ingenuity Pathway Analyzer: grow subnetworks IPA
Breedily	

Drunkard's Walk

- A drunk person leaves a bar.
- They move in steps, either by one unit to the right or by one unit to the left.
- When will they reach their home at the end of the street?
- If they return to the bar, they can only step out.

Drunkard's Walk

- A drunk person leaves a bar.
- They move in steps, either by one unit to the right or by one unit to the left.
- When will they reach their home at the end of the street?
- If they return to the bar, they can only step out.
- How do we think about this problem?
- Street is the x-axis, bar is at $x=0$, house is at $x=n$.
- Where could the drunk be after 1 step? After 2 steps? After 3 steps? After k steps?
- What is the probability that the drunk reaches home after k steps?
- What is the probability that the drunk reaches home at all?

Random Walk on a Grid

- A random walker leaves a starting location (conveniently at $(0,0)$).
- They move in steps, either by one unit to the right, left, top, or bottom.
- When will they reach their destination, which is at (n, n) ?

Random Walk on a Grid

- A random walker leaves a starting location (conveniently at $(0,0)$).
- They move in steps, either by one unit to the right, left, top, or bottom.
- When will they reach their destination, which is at (n, n) ?
- Where could the walker be after 1 step? After 2 steps? After 3 steps? After k steps?
- What is the probability that the walker reaches their destination after k steps?

Random Walk on a Grid

- A random walker leaves a starting location (conveniently at $(0,0)$).
- They move in steps, either by one unit to the right, left, top, or bottom.
- When will they reach their destination, which is at (n, n) ?
- Where could the walker be after 1 step? After 2 steps? After 3 steps? After k steps?
- What is the probability that the walker reaches their destination after k steps?
- Convenient to think of the grid as a graph. Can generalise the problem to a graph.

RWR Algorithm

Given weighted, directed graph $G=(V, E, W)$, receptors $S \subset V$ and TRs $T \subset V$, and a parameter $0 \leq q<1$.

- Walker at u transitions as follows:

Walk: With prob. $1-q$, walk to neighbor x with prob. $w_{u x} / d_{u}$ (outdegree)

RWR Algorithm

Given weighted, directed graph $G=(V, E, W)$, receptors $S \subset V$ and TRs $T \subset V$, and a parameter $0 \leq q<1$.

- Walker at u transitions as follows:

Walk: With prob. $1-q$, walk to neighbor x with prob. $w_{u x} / d_{u}$ (outdegree)
Teleport: With prob. q, teleport to one of $s \in S$, selected uniformly at random

RWR Algorithm

Given weighted, directed graph $G=(V, E, W)$, receptors $S \subset V$ and TRs $T \subset V$, and a parameter $0 \leq q<1$.

- Walker at u transitions as follows:

Walk: With prob. $1-q$, walk to neighbor x with prob. $w_{u x} / d_{u}$ (outdegree)
Teleport: With prob. q, teleport to one of $s \in S$, selected uniformly at random

- Compute the probability $p(v)$ each node is visited as steps $\rightarrow \infty$.

$$
p(v)=\frac{q}{|S|}[v \in S]+(1-q) \sum_{u \in N_{v}^{\mathrm{in}}} \frac{w_{u v}}{d_{u}} p(u) .
$$

RWR Algorithm

Given weighted, directed graph $G=(V, E, W)$, receptors $S \subset V$ and TRs $T \subset V$, and a parameter $0 \leq q<1$.

- Walker at u transitions as follows:

Walk: With prob. $1-q$, walk to neighbor x with prob. $w_{u x} / d_{u}$ (outdegree)
Teleport: With prob. q, teleport to one of $s \in S$, selected uniformly at random

- Compute the probability $p(v)$ each node is visited as steps $\rightarrow \infty$.

$$
p(v)=\frac{q}{|S|}[v \in S]+(1-q) \sum_{u \in N_{v}^{\mathrm{in}}} \frac{w_{u v}}{d_{u}} p(u) .
$$

- Output edges in decreasing order of edge fluxes: $f_{u v}=p_{u} w_{u v}$

PathLinker Algorithm

Given weighted, directed graph $G=(V, E, W)$, receptors $S \subset V$ and TRs $T \subset V$.

- Find the k "highest-scoring" paths from any $s \in S$ to any $t \in T$.
- Replace Dijkstra's algorithm with the A* algorithm for significant practical speedup.

Shortest Loopless Paths - Basic Idea

- Naïve Approaches (time-consuming):
- Enumerate all paths from s to t and sort.
- Obtain $k-1$ shortest paths, hide an edge from each path and find a shortest path in the modified network. Test all combinations.

Shortest Loopless Paths - Basic Idea

- Naïve Approaches (time-consuming):
- Enumerate all paths from s to t and sort.
- Obtain $k-1$ shortest paths, hide an edge from each path and find a shortest path in the modified network. Test all combinations.
- Basic idea of Yen's algorithm:
- Compute the shortest path from s to t
- The $k^{\text {th }}$ shortest path will be a deviation from the previously-discovered shortest path.

Shortest Loopless Paths

- $\left\{s, v_{2}, v_{3}, \ldots, t\right\}$ denotes a simple path from s to t
- $P^{k}=\left\{s, P_{2}^{k}, P_{3}^{k}, \ldots, P_{\left|P^{k}\right|-1}^{k}, t\right\}$ is the $k^{\text {th }}$ shortest path from s to t

Shortest Loopless Paths

- $\left\{s, v_{2}, v_{3}, \ldots, t\right\}$ denotes a simple path from s to t
- $P^{k}=\left\{s, P_{2}^{k}, P_{3}^{k}, \ldots, P_{\left|P^{k}\right|-1}^{k}, t\right\}$ is the $k^{\text {th }}$ shortest path from s to t
- D_{i}^{k} is the "deviation from P^{k-1} at node $P_{i}^{k-1 "}$ More specifically, the shortest $s \leadsto t$ path that:
(1) coincides with P^{k-1} from s to P_{i}^{k-1}
(2) deviates to a node u where u is not used as this deviation in any of the $k-1$ shortest paths
(3) reaches t by a shortest path from u without using any node in the first part of the path

Shortest Loopless Paths

- $\left\{s, v_{2}, v_{3}, \ldots, t\right\}$ denotes a simple path from s to t
- $P^{k}=\left\{s, P_{2}^{k}, P_{3}^{k}, \ldots, P_{\left|P^{k}\right|-1}^{k}, t\right\}$ is the $k^{\text {th }}$ shortest path from s to t
- D_{i}^{k} is the "deviation from P^{k-1} at node $P_{i}^{k-1 "}$ More specifically, the shortest $s \leadsto t$ path that:
(1) coincides with P^{k-1} from s to P_{i}^{k-1}
(2) deviates to a node u where u is not used as this deviation in any of the $k-1$ shortest paths
(3) reaches t by a shortest path from u without using any node in the first part of the path

- $R_{i}^{k}=\left\{s, P_{2}^{k}, P_{3}^{k}, \ldots, P_{i}^{k}\right\}$ is the root of D_{i}^{k}
- $S_{i}^{k}=\left\{P_{i}^{k}, \ldots, t\right\}$ is the spur of D_{i}^{k}

Shortest Loopless Paths

- Find the shortest path P^{1}
- For $k=2,3, \ldots$, find P^{k} as follows:

1: Let $B^{k}=B^{k-1}$, the set of candidate paths from iteration $k-1$
2: for $1 \leq i<\left|P^{k-1}\right|$ do
3: \quad Let $x=P_{i}^{k-1}$
4: Hide incoming edges to x for the remainder of iteration k
5: for each j such that the first i nodes in in P^{j} match P^{k-1} do
6: \quad Hide edge $\left(x, P_{i+1}^{j}\right)$ for the remainder of iteration k
7: end for
8: $\quad R_{i}^{k}$ is the first i nodes of P^{k-1}
9: $\quad S_{i}^{k}$ is the shortest path from x to t
10: \quad Join R_{i}^{k} and S_{i}^{k} to form D_{i}^{k}
11: Add candidate path D_{i}^{k} to B^{k}
12: end for
13: Remove the shortest path from B^{k} and return it

Example - Find P^{3}

$$
\begin{aligned}
& P^{1}=\{s, c, d, t\} \\
& P^{2}=\{s, a, t\} \\
& P^{3}=?
\end{aligned}
$$

Example - Hide Edges for Root $\{s\}$

$$
\begin{aligned}
& P^{1}=\{s, c, d, t\} \\
& P^{2}=\{s, a, t\} \\
& P^{3}=?
\end{aligned}
$$

Example - Hide Edges for Root $\{s, a\}$

$$
\begin{aligned}
& P^{1}=\{s, c, d, t\} \\
& P^{2}=\{s, a, t\} \\
& P^{3}=?
\end{aligned}
$$

Example - Find Shortest Spur for Each Root

$$
\begin{aligned}
& P^{1}=\{s, c, d, t\} \\
& P^{2}=\{s, a, t\} \\
& P^{3}=? \\
& S_{1}^{3}=\{s, e, f, t\} \\
& S_{2}^{3}=\{a, b, t\}
\end{aligned}
$$

Example - Identify Shortest Deviation

$$
\begin{aligned}
& P^{1}=\{s, c, d, t\} \\
& P^{2}=\{s, a, t\} \\
& P^{3}=? \\
& S_{1}^{3}=\{s, e, f, t\} \\
& S_{2}^{3}=\{a, b, t\} \\
& D_{1}^{3}=\{s, e, f, t\} \\
& D_{2}^{3}=\{s, a, b, t\}
\end{aligned}
$$

How do we find S_{i}^{k} efficiently?

- For $k=2,3, \ldots$, find P^{k} as follows:

1: Let $B^{k}=B^{k-1}$, the set of candidate paths from iteration $k-1$
2: for $1 \leq i<\left|P^{k-1}\right|$ do
3: \quad Let $x=P_{i}^{k-1}$
4: Hide incoming edges to x for the remainder of iteration k
5: for each j such that the first i nodes in in P^{j} match P^{k-1} do
6: \quad Hide edge (x, P_{i+1}^{j}) for the remainder of iteration k
7: end for
8: $\quad R_{i}^{k}$ is the first i nodes of P^{k-1}
9: $\quad S_{i}^{k}$ is the shortest path from x to t
10: \quad Join R_{i}^{k} and S_{i}^{k} to form D_{i}^{k}
11: Add candidate path D_{i}^{k} to B^{k}
12: end for
13: Remove the shortest path from B^{k} and return it

Compare Distances to Curated Pathway

Distance of interactions from any node in the pathway

$$
\text { Recall }=0.20
$$

Recall $=0.60$

Compare Rate of Recovery of Receptors/TRs

Add Noise to Inputs

Add Noise to Inputs

Add Noise to Inputs

Add Noise to Inputs

Add Noise to Inputs

Compare to Reconstructing Proteins

Reconstruct KEGG Pathways

List of KEGG Pathways

Wnt Signaling Pathway: Top 200 PathLinker Paths

Comparing Wnt Reconstructions

HEK293 Cells

HEK293 Cells

HEK293 Cells

Luciferase Reporter Efficacy

- siRNA Silencing Efficacy

HEK293 Cells

Plate cells and siRNA silence nono of intaract

Transfect secreted Wnt3a (sWnt3a) stimulus

Measure
cellular B-catenin lavalc

	Control		-Ryk		-CFTR		-Dab2	
Wnt	NRL	QN β						
No Wnt	--	--	--	--	--	--	--	--
Wnt 1	VS	++	S	-	VS	+	VS	++
Wnt 2	VS	+	S	++	VS	++	VS	++
Wnt 2b2	W	-	W	+	S	++	W	-
Wnt 3	VS	++	S	++	VS	++	VS	++
Wnt 3a	VS	++	VS	++	VS	++	VS	++
Wnt 6	W	++	W	+	W	+	W	++
Wnt 7a	W	-	W	+	S	-	W	++
Wnt 7b	W	++	W	-	S	-	W	++
Wn 8a	W	-	W	-	W	++	W	++
Wnt 9b	W	-	W	-	W	-	W	++
Wnt 10b	W	-	W	-	W	++	S	++

New Model: Dvl is an Ampliflier of Wnt Signaling

PathLinker Summary

How Many Paths Does PathLinker Need to Compute?

How Many Paths Does PathLinker Need to Compute?

How Many Paths Does PathLinker Need to Compute?

We compute 20,000 paths to achieve a recall of 0.7 .

How Many Paths Does PathLinker Need to Compute?

We compute 20,000 paths to achieve a recall of 0.7.

NetPath Pathways

(1) The pathway contains at least one receptor.
(2) The pathway contains at least one TR, and
(3) The minimum cut between the receptors and TRs was at least three in the NetPath pathway.

Pathway	\#Nodes	\#Edges	Min Cut	\# Receptors	\# TRs
BDNF	72	139	4	5	4
EGFR1	231	1456	30	6	33
IL1	43	178	7	3	5
IL2	67	242	16	3	12
IL3	70	176	5	2	9
IL6	53	162	6	4	14
IL7	18	52	5	2	3
Kit Receptor	76	207	5	6	8
Leptin	55	135	8	3	15
Prolactin	68	199	10	4	9
RANKL	57	142	4	2	12
TCR	154	504	8	4	21
TGF β Receptor	209	863	32	5	78
TNF α	239	913	15	4	44
Wnt	106	428	7	14	14
	Inputs for Pathway				

KEGG Pathways

(1) The Pathway is related to signaling.
(2) The pathway contains at least one receptor.
(3) The pathway contains at least one TR, and
(4) The minimum cut between the receptors and TRs was ≥ 3 in the KEGG pathway.

Name	KEGG ID	Name	KEGG ID
Adherens junction	hsa04520	Adipocytokine signaling pathway	hsa04920
Apoptosis	hsa04210	Axon guidance	hsa04360
Chemokine signaling pathway	hsa04062	Circadian entrainment	hsa04713
Dopaminergic synapse	hsa04728	Endocytosis	hsa04144
ErbB signaling pathway	hsa04012	Focal adhesion	hsa04510
FoxO signaling pathway	hsa04068	GnRH signaling pathway	hsa04912
HIF-1 signaling pathway	hsa04066	Hippo signaling pathway	hsa04390
Insulin signaling pathway	hsa04910	Jak-STAT signaling pathway	hsa04630
Prolactin signaling pathway	hsa04917	MAPK signaling pathway	hsa04010
Melanogenesis	hsa04916	Natural killer cell mediated	hsa04650
		cytotoxicity	
Neurotrophin signaling pathway	hsa04722	NF-kappa B signaling pathway	hsa04064
Notch signaling pathway	hsa04330	Osteoclast differentiation	hsa04380
TGF-beta signaling pathway	hsa04350	Thyroid hormone signaling pathway	hsa04919
Tight junction	hsa04530	Toll-like receptor signaling pathway	hsa04620
VEGF signaling pathway	hsa04370	Wnt signaling pathway	hsa04310
Leukocyte transendothelial	hsa04670	Signaling pathways regulating	hsa04550
migration		pluripotency of stem cells	

PathLinker Performance

PathLinker Performance

D How Many Paths?

Algorithm Internal Parameters

Algorithm	Parameter	Meaning
PathLinker	k	Number of shortest paths
RWR	q	Teleportation probability
ANAT	α	Tradeoff between global (Steiner tree) and
		local (shortest path) solution
PCSF	ω	Penalty for adding a new tree
	p	Prize for each node
ResponseNet	γ	Number of interactions that carry flow
IPA	$n_{\max }$	Maximum sub-network size

Algorithm Internal Parameters

(a)

Interactions in the Wnt Reconstruction

(b)

RWR $q=0.10$
RWR $q=0.25$
RWR $q=0.50$
RWR $q=0.75$
RWR $q=0.90$
\triangle ResponseNet $\gamma=10$
\triangle ResponseNet $\gamma=15$ ResponseNet $\gamma=20$
\triangle ResponseNet $\gamma=25$
\triangle ResponseNet $\gamma=30$
PCSF $p=1 \omega=0.00$

$$
\text { PCSF } p=1 \omega=0.01
$$

$$
\operatorname{PCSF} p=1 \omega=0.10
$$

$$
\text { PCSF } p=3 \omega=0.00
$$

$$
\text { PCSF } p=3 \omega=0.01
$$

$$
\text { PCSF } p=3 \omega=0.10
$$

∇	P
∇	P

∇	PCSF $p=9 \omega=0.10$
ANAT $\alpha=0.00$	
ANAT $\alpha=0.10$	
ANAT $\alpha=0.25$	
ANAT $\alpha=0.40$	
ANAT $\alpha=0.50$	
IPA $n_{\max }=5$	
IPA $n_{\max }=10$	

\bigcirc	IPA $n_{\max }=15$
\bigcirc	IPA $n_{\max }=25$
\bigcirc	IPA $n_{\max }=35$
\bigcirc	IPA $n_{\max }=50$
\bigcirc	IPA $n_{\max }=75$
\bigcirc	IPA $n_{\max }=100$
\bigcirc	IPA $n_{\max }=200$
0	IPA $n_{\max }=500$

PathLinker Summary

Recovering Proteins in a Pathway

$\underset{\text { Rroteins }}{\text { Ranked }}{ }^{1}$

Ranked
Interactions

PathLinker on a Weighted PPI

Interactions in the Aggregate Pathway Reconstruction Ignoring Pathway-Adjacent Negatives

PathLinker Network

PCSF Network

- PathLinker Network

ANAT Network

- PathLinker Network

IPA Network

- PathLinker Network

Luciferase Reporter Efficacy

siRNA Silencing Efficacy

Co-Immunoprecipitation Experiments

Wnt

[^0]: ${ }^{1}$ Aranda et al., PSICQUIC and PSISSCORE: assessing and scoring molecular interactions. Nature Methods, 2011.
 ${ }^{2}$ Kandasmy et al., NetPath: a public resource of curated signaling transduction pathways. Genome Biology, 2010.
 ${ }^{3}$ Kanehisa et al., KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 2012.
 ${ }^{4}$ Paz et al., SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Research, 2009.

