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BEELINE 2.0 Cell Type Prediction Virus-Host Complexes Virus-Host Support

Class Projects that Resulted in Papers
@ VIRGO: Computational Prediction of Gene Functions, Naveed Massjouni, Corban Rivera,
and T. M. Murali, Nucleic Acids Research, 2006.
@ Network Legos: Building Blocks of Cellular Wiring Diagrams, T. M. Murali and Corban G.
Rivera, RECOMB 2007, JCB 2008.

© Computational Prediction of Interactions between Host and Pathogen Proteins, Matthew
Dyer, T. M. Murali, and Bruno Sobral, ISMB 2007.

@ Divergence of Gene Expression Profiles in Tandemly Arrayed Genes in Human and Mouse,
Valia Shoja, T. M. Murali, and Liqing Zhang, Comparative and Functional Genomics,
2007.

© Network-Based Prediction and Analysis of HIV Dependency Factors, T. M. Murali,
Matthew D. Dyer, David Badger, Brett M. Tyler, and Michael G. Katze, PLoS
Computational Biology, 2011.

@ Top-Down Network Analysis to Drive Bottom-Up Modeling of Physiological Processes,
Christopher L. Poirel, Richard R. Rodrigues, Katherine C. Chen, John J. Tyson, and T. M.
Murali, JCB, 2013.

@ Pathways on Demand: Automatic Reconstruction of Human Signaling Networks, Anna
Ritz, Christopher L. Poirel, Allison N. Tegge, Nicholas Sharp, Allison Powell, Kelsey
Simmons, Shiv D. Kale, and T. M. Murali, npj: Systems Biology and Applications, 2016.

© Computational Construction of Toxicant Signaling Networks, Jeffrey Law, Sophia M.
Orbach, Bronson Weston, Peter Steele, Padmavathy Rajagopalan, and T. M. Murali,
revision in preparation, Chemical Research in Toxicology, 2023.
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List of Projects

© Develop PathLinker 2.0
@ Develop BEELINE 2.0

© Predict cell types

@ Predict protein complexes

@ Predict virus-host interactions
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Overview

© Develop PathLinker 2.0
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1 PathLinker 2.0

@ Goal: develop a new algorithm to
reconstruct signaling pathways.

» Supervised algorithm that can use
information on the edges in a pathway
to predict new edges.

Permit paths with cycles.
Propose alternative, biologically
meaningful formulations of the
problem.

T. M. Murali
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1 PathLinker 2.0

@ Goal: develop a new algorithm to
reconstruct signaling pathways.

» Supervised algorithm that can use
information on the edges in a pathway
to predict new edges.

» Permit paths with cycles.

©  » Propose alternative, biologically
meaningful formulations of the
problem.

@ Use cross-validation to test
performance: develop meaningful ways
of deleting nodes/edges.
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Evaluating Reconstructions with Cross Validation

Curated pathway
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Evaluating Reconstructions with Cross Validation

Edges removed for cross validation
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Evaluating Reconstructions with Cross Validation

&

Proposed reconstruction
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PL 2.0

Evaluating Reconstructions with Cross Validation

Curated pathway and proposed reconstruction
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PL 2.0

Evaluating Reconstructions with Cross Validation
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Cross validation edges and proposed reconstruction
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PL 2.0

Evaluating Reconstructions with Cross Validation

Precision and recall
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PL 2.0

Project Details

Paper: Pathways on Demand: Automatic Reconstruction of Human
Signaling Pathways, Ritz et al., Systems Biology and Applications, a
Nature partner journal, 2016

Ideas published in the literature since the PathLinker paper.
PathLinker code
SPRAS software for comparing pathway reconstruction algorithms.

Update signaling pathways network dataset used in PathLinker paper.
What does SPRAS do?

Find several meaningful alternatives methods to compare your
algorithm with.

Create computational analyses that are different from the PathLinker
paper.
Do literature analysis of predicted interactions.
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http://bioinformatics.cs.vt.edu/~murali/papers/2016-sysbio-appl-pathlinker-with-supplement.pdf
http://bioinformatics.cs.vt.edu/~murali/papers/2016-sysbio-appl-pathlinker-with-supplement.pdf
https://github.com/Murali-group/PathLinker
https://github.com/Reed-CompBio/spras

Overview

@ BEELINE 2.0
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BEELINE 2.0
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Cellular Differentiation
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Cellular Differentiation

"fg’” Erythrocytes
CMP_y ~ ™ Megakaryocytes
Monocytes

Granulocytes

other myeloid cells

lymphoid cells

@ Cells in different states express different sets of genes.

@ Cells move from one “state” to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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BEELINE 2.0

Cellular Differentiation

Erythrocytes
Megakaryocytes
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other myeloid cells

lymphoid cells
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@ Transcription factors activate/inhibit genes to effect cell transition from one
state to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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BEELINE 2.0

Gene Regulatory Network (GRN)
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Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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BEELINE 2.0

Gene Regulatory Network (GRN)
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How do we build GRNs using computational techniques?

Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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BEELINE 2.0

Bulk RNA Sequencing

@ A population of cells isolated at the same time may correspond to
multiple, distinct intermediate differentiation states.

Averages gene expression and masks cellular heterogeneity.

Difficult to experimentally purify cells in intermediate states.

Tissue

~y =
V=-11-7

Bulk RNA input Average gene expression Cellular heterogeneity
from all cells masked

10x Genomics
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BEELINE 2.0

Single-cell RNA Sequencing (scRNA-seq)

@ Produce thousands of independent measurements.

@ Computational ordering of cells along “lineages” provide a
high-resolution “pseudotemporal” view of gene expression kinetics.

@ Richness of these datasets may facilitate inference.

Single-Cell Analysis

-

¥
¥

Single-Cell input

Bulk Analysis

Bulk RNA input

Tissue

10x Genomics
Trapnell et al., “The dynamics and regulators of cell fate decisions ..
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Each cell type has a distinct
expression profile

I -

Reveals heterogeneity
and subpopulation
expression variability of
thousands of cells

?

Average gene expression

from all cells

."", Nat. Biotech., 2014.

Cellular heterogeneity
masked
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Over a Dozen Methods Have Already Been Developed

Properties
@
N
§ o
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PIDC MI -
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GRNBOOST2 RF -
SCODE ODE+Reg opE
parameters
PPCOR Corr -
SINCERITIES Reg -
SCRIBE Ml Type of RDI
Regression
SINGE GC parameters
LEAP Corr Lag
GRISLI ODE+Reg Regression
parameters

GRNVBEM Reg -

Boolean
SCNS  Bool model
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Over a Dozen Methods Have Already Been Developed

Properties
@
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parameters
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SCRIBE Ml Type of RDI
Regression
SINGE GC parameters
LEAP Corr Lag
GRISLI ODE+Reg Regression
parameters

GRNVBEM Reg -

Boolean
SCNS  Bool model

How accurately do these methods infer GRNs?
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BEELINE 2.0

Evaluation of Inferred GRNs
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Evaluation of Inferred GRNs

Inferred Reconstruction
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BEELINE 2.0

Evaluation of Inferred GRNs
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Ground-truth GRN and Inferred Reconstruction
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Evaluation of Inferred GRNs

Overlap
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BEELINE 2.0

Evaluation of Inferred GRNs
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BEELINE 2.0

Evaluation of Inferred GRNs
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BEELINE 2.0

- Eliluation of Inferred GRNs
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BEELINE 2.0

Evaluation of Inferred GRNs
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BEELINE 2.0

Evaluation of Inferred GRNs
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BEELINE 2.0

Evaluation of Inferred GRNs
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BEELINE 2.0

Evaluation of Inferred GRNs
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Performance of Current Algorithms

SCODE: an efficient regulatory network inference
algorithm from single-cell RNA-Seq during
differentiation 3

Hirotaka Matsumoto &, Hisanori Kiryu, Chikara Furusawa,

Minoru S H Ko, Shigeru B H Ko, Norio Gouda, Tetsutaro Hayashi,
Itoshi Nikaido

Bioinformatics, Volume 33, Issue 15, 01 August 2017, Pages 2314-2321,
https://doi.org/10.1093/bioinformatics/btx194
Published: 04 April 2017  Article history v

Table 1

The AUC values of each method for each dataset

SCODE Im msgps  Cor GENIE3  Jump3
Datal 0.536 0.480 0.510 0.505 0.474 0.504
Data2  0.581 0.489 0.516 0.492 0472 0.492
Data3  0.523 0.480  0.499 0.524  0.522 0.501

Note: Cor is the correlation network.
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BEELINE 2.0

Performance of Current Algorithms

Network Inference with Granger Causality Ensembles on Single-Cell
Transcriptomic Data

© Atul Deshpande, @ Li-Fang Chu, Ron Stewart, @ Anthony Gitter
doi: https://doi.org/10.1101/534834
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Performance is close to that of a random predictor!
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BEELINE 2.0 Cell Type Prediction Virus-Host Complexes Virus-Host Support

Motivation for Benchmarking GRN Inference Methods

o Criteria for evaluation and comparison of methods vary from one
paper to another.

@ No existing framework for systematic comparison of methods.

Genes

scRNA-seq
expression

Predicted GRN

T. M. Murali February 15, 2023 CS 5854: Projects



BEELINE 2.0

The BEELINE Framework

Precision Recall Curves

—>

GRN inference methods

Simulated data from synthetic networks Early Precision

1
8

Parameter search Run algorithms Stability
)

Predicted networks

- across simulations
- in the presence of

dropouts
- across algorithms

Network motifs

0 D >

Software run time
and memory usage

- (~)

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data,
Pratapa, Jalihal, Law, Bharadwaj, and Murali, Nature Methods, 2020.
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BEELINE 2.0

The BEELINE Framework

Precision Recall Curves
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GRN inference methods
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Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data,
Pratapa, Jalihal, Law, Bharadwaj, and Murali, Nature Methods, 2020.
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BEELINE 2.0

The BEELINE Framework

Simulated data from synthetic networks

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

-

GRN inference methods

Parameter search Run algorithms

L — B

Predicted networks

Pratapa, Jalihal, Law, Bharadwaj, and Murali, Nature Methods, 2020.

M. M
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BEELINE 2.0

The BEELINE Framework ————

GRN inference methods
>

Simulated data from synthetic networks Early Precision

o {1
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Parameter search Run algorithms Stability

dynverse
)

Predicted networks

=\

- across simulations

- in the presence of
dropouts

- across algorithms

Network motifs

Software run time
and memory usage

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data,
Pratapa, Jalihal, Law, Bharadwaj, and Murali, Nature Methods, 2020.
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BEELINE 2.0

Input Type 3: Experimental scRNA-seq Datasets

Simulated data from synthetic networks
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Input Type 3: Experimental scRNA-seq Datasets

Mouse Human
Embryonic stem cells Dendritic cells Embryonic stem cells
B,
101 ] »
%‘, 00/h (20) 72h(91) . g
0.5 i
g Hepatocytes
05
e
bl ~ Ri
-1.0 3 ”M -
2 ;
10 -05 00 05 10 i
DC1 .

lNestorovva, et al. (2016) “A single-cell ...”. Blood, 128, 20-31.

2Haryashi et al. (2018) “Single-cell ...” Nat. Commun,. 9, 619.

3 Shalek et al. (2014) “Single-cell RNA-seq ..." Nature, 510, 363-369.

4Camp et al. (2017) “Multilineage communication ..." Nature, 546, 533-538 .
5Chu et al. (2016) “Single-cell ..." Genome Biol, 17, 173.
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BEELINE 2.0

Input Type 3: Experimental scRNA-seq Datasets
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No standard ground-truth networks
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BEELINE 2.0

Ground-Truth Networks

o Cell-type specific ChIP-seq network®

e Non-specific ChIP-seq network?3:4

@ STRING network®

1.0ki et al. (2018) “ChIP-Atlas: ..." EMBO Rep. e46255

2.Liu et al. (2015) “RegNetwork: an integrated ..."” Database, 2015
3.Han et al. (2018) “TRRUSTV2 ..."” NAR, 46(D1):D380-D386
4.Garcia et al. (2019) “Benchmark ..." Gen. Res., 29:1363-1375
5.Szklarczyk et al. (2019) “STRING v11...” NAR, 47:D607-613
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BEELINE 2.0 Cell Type Prediction Virus-Host Complexes Virus-Host Support

Results on Human Datasets

@ EPR: predicted interactions of higher confidence will be more
interesting to experimentalists.

@ Only considered edges between TFs and genes.

TFs +500 genes
Network Statistics EPR
£© @e«’? oe“’;\)‘q@('(,@‘\ ‘,00 R
STRING
hHep 409 656 0.03 3.5 _
\
(
Non-specific hESC 283 760 0.02 “
ChiP-Seq hHep 322 832 0.02 - -
\
Celype [  hESC 34 815 0.16 1.1
specific i e
Random Predictor  Low/Poor High/Good
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BEELINE 2.0 Cell Type Prediction Virus-Host Complexes

Virus-Hos Support

Results on Human Datasets

@ EPR: predicted interactions of higher confidence will be more

interesting to experimentalists.

@ Only considered edges between TFs and genes.
TFs +500 genes

TFs +1000 genes

Network Statistics EPR Network Statistics EPR

5 o T SN
£ o T 50 oo e o P

(" hesc 343 517 002 3.8 351 709 0.02 4.1
STRING

292 1149 0.01

hHep 409 656 0.03 3.5

\
(
Non-specific hESC 283 760 0.02 1.9
ChiP-Seq hHep 322 832 0.02
\
Cell-type ( hESC 34 815 0.16

332 1224 0.01

specific hi 30 874 0.38 BN 1.2 31 1331 0.38 BN
ChipSeq | NHep ' 2 = [l

Random Predictor Low/Poor High/Good

T. M. Murali February 15, 2023
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BEELINE 2.0

Cell Type Prediction Virus-Host Complexes Virus-Hos

Results on Human Datasets

@ EPR: predicted interactions of higher confidence will be more
interesting to experimentalists.

@ Only considered edges between TFs and genes.

STRING

Non-specific
ChIP-Seq

Cell-type
specific
ChIP-Seq

TFs +500 genes TFs +1000 genes

Support

Network Statistics EPR Network Statistics EPR

5 o T SN
£ o T 50 oo e o P

hESC 343 517 0.02 3.8 351 709 0.02 4.1
L hHep 409 656 0.03 3.5 414 889 0.02 3.6
( hESC 283 760 0.02 1.9 292 1149 0.01
L hHep 322 832 0.02 332 1224 0.01
(" hEsC 34 815 0.16 i
L hHep 30 874 0.38 1.2- 31 1331 0.38 .
Random Predictor Low/Poor High/Good

Substantial fraction of the edges in the inferred GRNs were indirect. J

T. M. Murali
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nature methods

ANALYSIS

hitps://doi.org/10.1038/541592-019-0690-6

Benchmarking algorithms for gene regulatory
network inference from single-cell

transcriptomic data

Aditya Pratapa®', Amogh P. Jalihal ©2, Jeffrey N. Law ©2, Aditya Bharadwaj' and T. M. Murali ®™

il tran-

scriptional data. As the ground truth for assessing accuracy, we use
ture-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy to simalate single-cell
syntheti

networks with predictable trajectories, litera-

‘we col-

M Itipl, i ingle-cell

We devekw an mluaﬂon framework called !EELINE.

ter In recovering Interactions in symtheti netwoks than Boolean models. The algorithms with the best sarly precision v:lues

for Boolean models also pe

do not requi d cells are
to !nd users. IEELINE will aid the development

generally more accurate. Based

to trace cellular lineages during differentiation and to iden-

tify new cell types'. A central question that arises now is
whether we can discover the gene regulatory networks (GRNs)
that control cellular differentiation and drive transitions from
one cell type to another. In such a GRN, each edge connects a
transcription factor (TF) to a gene it regulates. Ideally, the edge
is directed from the TF to the target gene, represents direct
rather than indirect regulation and corresponds to activation

S ingle-cell RNA-sequencing technology has made it possible

Results
Overview of algorithms. We surveyed the lterature and bioRxiv
preprints anewGRN

rithm or used an existing approach, We ignored methods that did
not assign weights or ranks to the interactions, required additional
datasets or supervision, or sought to discover cell-type-specific net-
works. We selected 12 algorithms using these criteria (Methods).
‘We used BEELINE to evaluate these approaches on over 400
simulated datasets (across six synthetic networks and four curated

Pratapa, A., et al. “Benchmarking algorithms for gene regulatory ..

Benchmarking algorithms for gene regulatory network inference from single-cell
transcriptomic data

A Pratapa, AP Jalihal, JN Law, A Bharadwaj, TM Murali
Nature methods 17 (2), 147-154

58

" Nat. Methods (2020), 17(2), pp. 147-154.




Virus-Host

BEELINE 2.0 Cell Type Prediction Virus-Host Complexes

2 BEELINE 2.0

Support

@ Goal: Improve usefulness of BEELINE for experimental scRNA-seq
datasets.

>

v vy

>

High priority

Implement continuous integration.
Add GRN inference methods and test them.
Develop alternative gene selection strategies.

Implement additional evaluation measures developed in GRN inference

papers.

Medium priority

Add experimental scRNA-seq datasets.

» Find better ground truth datasets. Automate selection of cell type.

@ Low priority

T. M. Murali

>

Try imputation of missing data first.

» Add denoising methods, e.g., molecular cross validation paper.
» For real datasets, run parameter search on each type of network when

using that type as ground truth.

February 15, 2023
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02132-x
https://www.biorxiv.org/content/10.1101/786269v1

Overview

© Cell Type Prediction
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3 Cell Type Prediction

@ A comparison of automatic cell a CollOntology »
identification methods for . I
single-cell RNA sequencing data i yar it

@ Leveraging the Cell Ontology to 50 009 gt
classify unseen cell types uses a :: \.VQ";“-‘ O Step2
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@ Use network-based algorithms for
predicting cell types.

Gene expression of single cells

0 ¢
©0®
o®

o Step 3
° Project single cells

» Two networks: one is among :
cells and the other is the Cell Unannotated cells

Annotated cells
Ontology.
» Evaluate network propagation _ .
a |go ri t h ms t h at res p ect t h e Celltype annotation  Marker genes identifcation Data integration

1)CDa* Y
s, | 2)CD25
S i

ontology structure.

» Alternative is to develop
improved deep learning
methods.
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rus-Host Complexes
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Virus-Host Complexes

Hepatitis E Virus

Rabbit (G3
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@ Causes a public health disease worldwide with more than 20 million
new human infections and 40,000 deaths annually.

o HEV-specific antiviral drug is not available.

@ Zoonotic pathogen with more than a dozen animal hosts.

@ Viral genetic element(s) responsible for species jumping and
adaptation in humans remain unknown.
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Hepatitis E Virus
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@ Many HEV sequences that infect humans and other animal species
are available.

@ HEV-human protein interactions are known via yeast 2-hybrid screens.

@ Human receptor for Capsid protein is unknown!
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4 Predict Host Receptor for a Virus

@ Given a viral gene sequence v and a human receptor sequence r,
predict the structure of the complex. v and r may have
experimentally-determined structures or you can predict their
structures.

@ Given a viral gene sequence v and two human receptors r; and rp,
does v bind better to r; than to rn?

@ Given two viral gene sequences v; and v, and a human receptor ry,
does v; bind better to r than v to r?
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4 Predict Host Receptor for a Virus

@ Given a viral gene sequence v and a human receptor sequence r,
predict the structure of the complex. v and r may have
experimentally-determined structures or you can predict their
structures.

@ Given a viral gene sequence v and two human receptors r; and rp,
does v bind better to r; than to rn?

@ Given two viral gene sequences v; and v, and a human receptor ry,
does v; bind better to r than v to r?

@ Use any techniques that are appropriate:
» Predict structures of individual proteins and use simulations to test if
they interact.
» Use existing algorithms to predict and score structures of protein
complexes.
> Develop your own ideas.
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Overview

© Predict Virus-Host Interactions
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Virus-Host Interactions

VIRION

* Host
Virus

o Global virome (set of all viruses in the biosphere) is highly
underdocumented.

@ > 40,000 species of viruses may infect mammals and thousands can
probably infect humans.

@ The Global Virome in One Network (VIRION) database records
23,147 unique interactions between 9,521 viruses and 3,692
vertebrate hosts.

@ Discovering even one such interaction requires extensive wildlife
surveillance and testing.
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5 Predict Virus-Host Interactions

VIRION

* Host
- Virus

@ Goal: Develop, implement, and test algorithms to predict links
between viruses and hosts.
» Read papers on link prediction, general as well as host-parasite
networks.
» Create BEELINE-style benchmark.
» Implement cross-validation to avoid data leakage.
» Design your own algorithm.
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Hardware Support for Projects

@ Research virtual machines maintained by the Department of Computer
Science.

@ Obtain accounts on bioinformatics.cs.vt.edu from Rob Hunter
(rhunter at vt dot edu).

@ Can get accounts on ARC, if necessary.
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Ground Rules for Projects

Send me project choices by Monday, February 20.
| will schedule 1 hour meetings with each group every 2 weeks.

Maintain Google docs describing your project and your progress.

Preliminary project reports (motivation, background, related and
previous research, approach, data, any preliminary results) due on
Monday, March 27.

@ Final project presentations on May 1 and May 3.

@ Final project reports due on 5pm, Friday, May 5: 11pt font, 10 pages
(not counting references), formatted like a journal paper.
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List of Projects

© Develop PathLinker 2.0
@ Develop BEELINE 2.0

© Predict cell types

@ Predict protein complexes

@ Predict virus-host interactions
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