CS 5854: Projects

T. M. Murali

February 20, 2020
Student Presentations

- Start on Tuesday, February 25.
- Each presentation is 75 minutes long (including 20–30 minutes of questions).
- Prepare reading notes (Google doc).
 - Send me draft of your notes about 10-14 days before your presentation.
 - Share final version of notes with the class about 7 days before your presentation.
- Any questions about the papers I have assigned?
Suggestions on Reading and Presenting Papers

- Be sceptical/critical: even papers in Nature, Science, or PNAS have errors or invalid thinking.
Suggestions on Reading and Presenting Papers

- Be sceptical/critical: even papers in Nature, Science, or PNAS have errors or invalid thinking.
- Algorithmic/computational papers:
 - Are the biological assumptions valid?
 - Is the algorithm good and computational efficient? Can you improve the technique?
 - Can you mathematically describe the output of the algorithm?
 - Don’t have to give all details. You can just present the essential ideas.

Read supplementary information. Often has details about the assumptions, the techniques, and the results.
Suggestions on Reading and Presenting Papers

- Be sceptical/critical: even papers in Nature, Science, or PNAS have errors or invalid thinking.

- Algorithmic/computational papers:
 - Are the biological assumptions valid?
 - Is the algorithm good and computational efficient? Can you improve the technique?
 - Can you mathematically describe the output of the algorithm?
 - Don’t have to give all details. You can just present the essential ideas.

- Read supplementary information. Often has details about the assumptions, the techniques, and the results.
Class Projects that Resulted in Papers

List of Projects

1. Develop BEELINE 2.0
2. Predict cell types
3. Analyze PanCancer data
4. Predict HPO annotations
Overview

1. BEELINE 2.0
2. Cell Type Prediction
3. Analyse PanCancer data
4. Predict HPO Annotations
5. Support
1 BEELINE 2.0

- Goal: Improve usefulness of BEELINE for experimental scRNA-seq datasets.
- Implement continuous integration.
- Add GRN inference methods and test them.
- Try imputation of missing data first.
- Add denoising methods, e.g., molecular cross validation paper.
- Develop alternative gene selection strategies.
- Find better ground truth datasets. Automate selection of cell-type.
- Implement additional evaluation measures developed in GRN inference papers.
- For real datasets, run parameter search on each type of network when using that type as ground truth.
Overview

1. BEELINE 2.0
2. Cell Type Prediction
3. Analyse PanCancer data
4. Predict HPO Annotations
5. Support
2 Cell Type Prediction

- A comparison of automatic cell identification methods for single-cell RNA sequencing data
- **OnClass** uses a 2-layer perceptron in combination with the Cell Ontology.
2 Cell Type Prediction

- A comparison of automatic cell identification methods for single-cell RNA sequencing data
- **OnClass** uses a 2-layer perceptron in combination with the Cell Ontology.
- Use network-based algorithms for predicting cell types.
 - Two networks: one is among cells and the other is the Cell Ontology.
 - Evaluate network propagation algorithms that respect the ontology structure.
 - Alternative is to develop improved deep learning methods.
Overview

1. BEELINE 2.0
2. Cell Type Prediction
3. Analyse PanCancer data
4. Predict HPO Annotations
5. Support
3 Prediction of tumour origin

- A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.
- Use random forests and a simple deep learning architecture.
3 Prediction of tumour origin

- A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
- Use random forests and a simple deep learning architecture.
3 Prediction of tumour origin

- A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.
- Use random forests and a simple deep learning architecture.

![Heatmap of cancer type predictions](image)

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast-AdenoCA (485)</td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Ovary-AdenoCA (22)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Panc-AdenoCA (293)</td>
<td>0.93</td>
<td>0.9</td>
</tr>
<tr>
<td>Lymph-CLL (85)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>CNS-Medullo (58)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Kidney-RCC (39)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Panc-Endocrine (18)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Skin-Melanoma (179)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Prost-AdenoCA (142)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Eso-AdenoCA (27)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Liver-HCC (39)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

T. M. Murali
February 20, 2020
CS 5854: Projects
3 Prediction of tumour origin

- A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.
- Use random forests and a simple deep learning architecture.
Overview

1. BEELINE 2.0
2. Cell Type Prediction
3. Analyse PanCancer data
4. Predict HPO Annotations
5. Support
Human Phenotype Ontology

Goal: Predict gene annotations to HPO terms.

Develop BEELINE-like framework:
- Multiple algorithms.
- Multiple networks.
- Different evaluation criteria.

Benchmarking network propagation methods for disease gene identification
Overview

1. BEELINE 2.0
2. Cell Type Prediction
3. Analyse PanCancer data
4. Predict HPO Annotations
5. Support
Hardware Support for Projects

- Research virtual machines maintained by the Department of Computer Science.
- 40-processor, 20-node cluster in the Department of Computer Science dedicated to bioinformatics (baobab.cs.vt.edu).
- Obtain accounts on bioinformatics.cs.vt.edu from Rob Hunter (rhunter at vt dot edu).
Software Support for Projects

- My Github page: http://github.com/Murali-group
Ground Rules for Projects

- Send me project choices by 10am, Thursday, February 20.
- 1 hour meetings with each group every 2 weeks or 4 weeks.
- Maintain Google docs describing your project and your progress.
- Project descriptions (motivation, background, related and previous research, approach, data, any preliminary results) due on Tuesday, March 17.
- Final project presentations possibly on Tuesday, May 5. Also possible to set aside a special day just for final presentations.
- Final project reports due on 5pm, Friday, May 8: 11pt font, 10 pages (not counting references), formatted like a journal paper.
List of Projects

1. Develop BEELINE 2.0
2. Predict cell types
3. Analyze PanCancer data
4. Predict HPO annotations