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Introduction

Plethora of Computational Analysis Techniques

@ Mark Robinson v
@markrobinsonca

Dear #academictwitter, I'm looking for a list of

benchmarks for single cell RNA-seq data analysis.

Generally, so normalization, DE, clustering, cell

assignment, etc. I'm OFC aware of the "Methods

comparisons" section in @seandavis12's awesome list
(bit.ly/2Rhq1fY) ..

seandavi/awesome-single-cell

Community-curated list of software packages and data
resources for single-cell, including RNA-seq, ATAC-seq, etc...
& github.com

1:18 PM - Jan 22, 2020 - Twitter Web App

https://docs.google.com/spreadsheets/d/
1Gqn0eZ80iNh8-9ovyh4D_ZsoWcKYoKTJOC1AfrJrdRA/edit#gid=0
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Plethora of Computational Analysis Techniques
@SCRNA-t00lS  Taple Tools Updates  Submit FAQs
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Plethora of Computational Analysis Techniques

Technology Feature \ Published: 20 February 2020

Bench pressing with genomics
benchmarkers

Vivien Marx &

Nature Methods 17, 255-258 (2020) | Cite this article
5868 Accesses \ 8 Citations |59 Altmetric | Metrics

Some -omics tools can be more accurate, sensitive or efficient than
others. Yet benchmarking is no tell-all.
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Cellular Differentiation
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Anatomy and Physiology, Rice University. V
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Cellular Differentiation

"fg’” Erythrocytes
CMP_y ~ ™ Megakaryocytes
Monocytes

Granulocytes

other myeloid cells

lymphoid cells

@ Cells in different states express different sets of genes.

@ Cells move from one “state” to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Cellular Differentiation
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@ Transcription factors activate/inhibit genes to effect cell transition from one
state to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Introduction

Gene Regulatory Network (GRN)
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Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Introduction

Gene Regulatory Network (GRN)
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How do we build GRNs using computational techniques?

Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Introduction

Bulk RNA Sequencing

@ A population of cells isolated at the same time may correspond to
multiple, distinct intermediate differentiation states.

Averages gene expression and masks cellular heterogeneity.

Difficult to experimentally purify cells in intermediate states.

Tissue

~y =
V=-11-7

Bulk RNA input Average gene expression Cellular heterogeneity
from all cells masked

10x Genomics
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Introduction

Single-cell RNA Sequencing (scRNA-seq)

@ Produce thousands of independent measurements.

@ Computational ordering of cells along “lineages” provide a
high-resolution “pseudotemporal” view of gene expression kinetics.

@ Richness of these datasets may facilitate inference.

Single-Cell Analysis

-
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Single-Cell input

Bulk Analysis

Bulk RNA input

Tissue

10x Genomics
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Each cell type has a distinct
expression profile

I -

Reveals heterogeneity
and subpopulation
expression variability of
thousands of cells

?

Average gene expression

from all cells

Trapnell et al., “The dynamics and regulators of cell fate decisions ...", Nat. Biotech., 2014.

T. M. Murali

February 20, 22, 27, March 1, 2023

Cellular heterogeneity
masked

BEELINE
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How accurately do these methods infer GRNs?
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Performance of Current Algorithms

SCODE: an efficient regulatory network inference
algorithm from single-cell RNA-Seq during
differentiation 3

Hirotaka Matsumoto &, Hisanori Kiryu, Chikara Furusawa,

Minoru S H Ko, Shigeru B H Ko, Norio Gouda, Tetsutaro Hayashi,
Itoshi Nikaido

Bioinformatics, Volume 33, Issue 15, 01 August 2017, Pages 2314-2321,
https://doi.org/10.1093/bioinformatics/btx194
Published: 04 April 2017  Article history v

Table 1

The AUC values of each method for each dataset

SCODE Im msgps  Cor GENIE3  Jump3
Datal 0.536 0.480 0.510 0.505 0.474 0.504
Data2  0.581 0.489 0.516 0.492 0472 0.492
Data3  0.523 0.480  0.499 0.524  0.522 0.501

Note: Cor is the correlation network.
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Introduction

Precision
(=3
w

Performance of Current Algorithms

Network Inference with Granger Causality Ensembles on Single-Cell

Transcriptomic Data

© Atul Deshpande, @ Li-Fang Chu, Ron Stewart, @ Anthony Gitter

doi: https://doi.org/10.1101/534834
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Performance is close to that of a random predictor!
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Introduction

What is a GRN?

A MEP
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\ ----------------- » other myeloid cells
O .............. » lymphoid cells

—P Activation \
Inhibition

Krumsiek et al., Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 6,
2011.
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Evaluation of Inferred GRNs

Ground-truth GRN
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Evaluation of Inferred GRNs

Ground-truth GRN and Inferred Reconstruction
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Evaluation of Inferred GRNs

&

Ground-truth GRN and Inferred Reconstruction
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Evaluation of Inferred GRNs
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Introduction

Evaluation of Inferred GRNs
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Evaluation of Inferred GRNs
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Introduction

Evaluation of Inferred GRNs
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Evaluation of Inferred GRNs
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Introduction

Evaluation of Inferred GRNs
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@ What will a random predictor output? Random permutation of all possible edges.
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Introduction

Evaluation of Inferred GRNs
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@ What will a random predictor output? Random permutation of all possible edges.

@ What is the precision of a random predictor? At any recall, ratio of #edges in
ground-truth network and total number of possible edges.
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Performance of Current Algorithms

SCODE: an efficient regulatory network inference
algorithm from single-cell RNA-Seq during
differentiation 3

Hirotaka Matsumoto , Hisanori Kiryu, Chikara Furusawa,

Minoru S H Ko, Shigeru B H Ko, Norio Gouda, Tetsutaro Hayashi,
Itoshi Nikaido

Bioinformatics, Volume 33, Issue 15, 01 August 2017, Pages 2314-2321,
https://doi.org/10.1093/bioinformatics/btx194
Published: 04 April 2017  Article history v

Table1

The AUC values of each method for each dataset
SCODE Im msgps Cor GENIE3  Jump3
Datal 0.536 0.480 0.510 0.505 0.474 0.504
Data2  0.581 0.489 0.516 0.492  0.472 0.492
Data3  0.523 0.480  0.499 0.524  0.522 0.501

Note: Cor is the correlation network.
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Performance of Current Algorithms

Network Inference with Granger Causality Ensembles on Single-Cell
Transcriptomic Data

© Atul Deshpande, @ Li-Fang Chu, Ron Stewart, @ Anthony Gitter
doi: https://doi.org/10.1101/534834
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A = average precision, E = early precision
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Performance of Current Algorithms

Performance of many algorithms is
close to that of a random predictor!
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

Motivation for Benchmarking GRN Inference Methods

@ Criteria for evaluation and comparison of methods vary from one
paper to another.

@ There are no standard ground-truth datasets.

@ No existing framework for systematic comparison of methods.

Genes

scRNA-seq

expression Predicted GRN
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BEELINE’s Strategy

e How did BEELINE avoid these pitfalls (especially the second)?
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BEELINE’s Strategy

e How did BEELINE avoid these pitfalls (especially the second)?
@ Used ground-truth networks with predictable trajectories.
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BEELINE’s Strategy

e How did BEELINE avoid these pitfalls (especially the second)?
@ Used ground-truth networks with predictable trajectories.

» Synthetic “toy” networks from Dynverse.
» Boolean models curated from the literature.

Saelens et al., A comparison of single-cell trajectory inference methods Nat. Biotech., 2019
T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Experimental sc-RNA Seq Data

Introduction Synthetic Networks Curated Models

Input Type 1: Synthetic Networks

Simulated data from synthetic networks
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Synthetic Networks

Dynamics of Synthetic Networks

Linear Cycle Linear Long

Voo

@ A gene is ON if and only if at least one activator is ON and every inhibitor is
OFF. If there are no activators, a gene is ON iff every inhibitor is OFF.
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Synthetic Networks

Dynamics of Synthetic Networks

Linear

Work out dynamics on your own and on the board.

@ A gene is ON if and only if at least one activator is ON and every inhibitor is
OFF. If there are no activators, a gene is ON iff every inhibitor is OFF.
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Synthetic Networks

Dynamics of Synthetic Networks

Linear

Work out dynamics on your own and on the board.

@ A gene is ON if and only if at least one activator is ON and every inhibitor is
OFF. If there are no activators, a gene is ON iff every inhibitor is OFF.
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Synthetic Networks

Dynamics of Synthetic Networks

Cycle

Work out dynamics on your own and on the board.

@ A gene is ON if and only if at least one activator is ON and every inhibitor is
OFF. If there are no activators, a gene is ON iff every inhibitor is OFF.

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Synthetic Networks

Dynamics of Synthetic Networks

N4

Bifurcating

Work out dynamics on your own and on the board.

@ A gene is ON if and only if at least one activator is ON and every inhibitor is
OFF. If there are no activators, a gene is ON iff every inhibitor is OFF.

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Synthetic Networks

Strategy for Ground-Truth Networks

Evaluate accuracy
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BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.
@ What does BoolODE do?

@ How long do we perform each simulation?

How do we define (expression profile) for a cell?

How did we create simulated datasets?

@ Do we need to compute pseudotime?

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.

@ What does BoolODE do? Converts Boolean network into a system of
stochastic differential equations and simulates it.

@ How long do we perform each simulation?

How do we define (expression profile) for a cell?

How did we create simulated datasets?

@ Do we need to compute pseudotime?
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BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.

@ What does BoolODE do? Converts Boolean network into a system of
stochastic differential equations and simulates it.

How long do we perform each simulation? Depends on the network.
See Supplementary Table 7.

How do we define (expression profile) for a cell?

How did we create simulated datasets?

@ Do we need to compute pseudotime?
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BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.

@ What does BoolODE do? Converts Boolean network into a system of
stochastic differential equations and simulates it.

@ How long do we perform each simulation? Depends on the network.
See Supplementary Table 7.

@ How do we define (expression profile) for a cell? Select a random
timepoint from each simulation.

@ How did we create simulated datasets?

@ Do we need to compute pseudotime?

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.

@ What does BoolODE do? Converts Boolean network into a system of
stochastic differential equations and simulates it.

@ How long do we perform each simulation? Depends on the network.
See Supplementary Table 7.

@ How do we define (expression profile) for a cell? Select a random
timepoint from each simulation.

@ How did we create simulated datasets? See details in “Pre-processing
datasets from synthetic networks for GRN algorithms.”

@ Do we need to compute pseudotime?
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

BoolODE for Simulation

Read relevant part of “Methods” to answer these questions.

@ What does BoolODE do? Converts Boolean network into a system of
stochastic differential equations and simulates it.

@ How long do we perform each simulation? Depends on the network.
See Supplementary Table 7.

@ How do we define (expression profile) for a cell? Select a random
timepoint from each simulation.

@ How did we create simulated datasets? See details in “Pre-processing
datasets from synthetic networks for GRN algorithms.”

@ Do we need to compute pseudotime? Decided not to do so for
synthetic networks. Why?

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Synthetic Networks

Results of Simulations
(a) Toy Networks (b) Simulation Time  (c) Clusters (d) GeneNetWeaver

Linear
t-SNE 2
t-SNE 2

' - 4
-10 W -50 ;
-20 . g -75
[ 25

t-SNE 1

e What did we cluster in column (c)? Which clustering algorithm did
we use?

@ What value did we use if a GRN method required time-ordered cells?
Why?

e What do we learn by comparing plots in column (b) to those in
column (c)?

@ Does GeneNetWeaver (column (d)) replicate trajectories expected
from synthetic networks?

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Synthetic Networks

Results of Simulations
(a) Toy Networks (b) Simulation Time  (c) Clusters (d) GeneNetWeaver
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e What did we cluster in column (c)? Which clustering algorithm did
we use? We clustered entire simulations using the k-means algorithm
with k set to the expected number of steady states.

@ What value did we use if a GRN method required time-ordered cells?
Why?

e What do we learn by comparing plots in column (b) to those in
column (c)?

@ Does GeneNetWeaver (column (d)) replicate trajectories expected
from synthetic networks?
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Synthetic Networks

Results of Simulations
(a) Toy Networks (b) Simulation Time  (c) Clusters (d) GeneNetWeaver
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e What did we cluster in column (c)? Which clustering algorithm did
we use? We clustered entire simulations using the k-means algorithm
with k set to the expected number of steady states.

@ What value did we use if a GRN method required time-ordered cells?
Why? We used the simulation time.

e What do we learn by comparing plots in column (b) to those in
column (c)?

@ Does GeneNetWeaver (column (d)) replicate trajectories expected
from synthetic networks?
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Synthetic Networks

Results of Simulations
(a) Toy Networks (b) Simulation Time  (c) Clusters (d) GeneNetWeaver
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e What did we cluster in column (c)? Which clustering algorithm did
we use? We clustered entire simulations using the k-means algorithm
with k set to the expected number of steady states.

@ What value did we use if a GRN method required time-ordered cells?
Why? We used the simulation time.

e What do we learn by comparing plots in column (b) to those in
column (c)?

@ Does GeneNetWeaver (column (d)) replicate trajectories expected
from synthetic networks?
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Experimental sc-RNA Seq Data

Introduction Synthetic Networks Curated Models

Results of Simulations

(a) Toy Networks (b) Simulation Time
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e What did we cluster in column (c)? Which clustering algorithm did
we use? We clustered entire simulations using the k-means algorithm
with k set to the expected number of steady states.

@ What value did we use if a GRN method required time-ordered cells?
Why? We used the simulation time.

e What do we learn by comparing plots in column (b) to those in

column (c)?

@ Does GeneNetWeaver (column (d)) replicate trajectories expected

from synthetic networks?
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Synthetic Networks

Results for Multiple Simulations

Used 10 sets of simulation parameters
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Algorithms included in BEELINE

Properties
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Algorithms included in BEELINE

Properties
<
& @
S & F &
\?90 b\'\(\ 30‘ eé'e 02’8
1% © PR
PIDC Ml - X X X
CENES RE ) % v X @ Which algorithms were developed
for bulk RNA-seq data? GENEI3,
GRNBOOST2 RF - X v X
obE GRNBOOST2, PPCOR.
SCODE ODE+Reg parameters v v/ )
@ How did we evaluate methods that
PPCOR Corr - X X v -
output undirected GRNs? Gave
SINCERITIES Reg - VAR ) ;
both edge directions the same rank.
SCRIBE MI Type of RDI v v X
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AUPRC Results
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Synthetic Networks

AUPRC Results
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Synthetic Networks

AUPRC Results
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Synthetic Networks

AUPRC Results
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Synthetic Networks

AUPRC Results
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Synthetic Networks

AUPRC Results
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Summary of Results

AUPRC Ratio Stability Across Datasets
LI Cy LL BF BFC TF LI CYy LL BF BFC TF o What IS AUPRC rat|0?

SINCERITIES 4.8 10.4 2.2 3.5
SCRIBE
SINGE

@ What is a top-k GRN?

PPCOR

PIDC

GENIE3

HEAP @ How did we compute

GRNBOOST2 stability?

GRISLI
GRNVBEM
SCNS

SCODE

Low/Poor High/Good Low/Poor High/Good
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tic Networks

Summary of Results

AUPRC Ratio Stability Across Datasets
LI Cy LL BF BFC TF LI CYy LL BF BFC TF o What iS AUPRC ratiO?
AUPRC of method divided by
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predictor.
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tic Networks

Summary of Results

AUPRC Ratio Stability Across Datasets
LI CY LL BF BFC TF CY LL BF BFC TF @ What is AUPRC ratio?

AUPRC of method divided by

SINCERITIES 4.8 10.4 2.2 3.5 8
ScRIBE 0202l o the AUPRC of a random
predictor.
SINGE 0.2] 0.3 .
opcoR @ What is a top-k GRN?
Predicted network containing
PIDC . .
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GRNVBEM 0.8
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Synthetic Networks

Summary of Results

AUPRC Ratio Stability Across Datasets . .
LI CY LL BF BFC TF LI CY LL BF BFC TF o What IS AUPRC rat|0?
sneeres. EBREEEEEE _ AUPRC of method divided by
the AUPRC of a random
predictor.

@ What is a top-k GRN?
Predicted network containing

as many edges as the
ground-truth GRN.

SCRIBE
SINGE
PPCOR
PIDC
GENIE3
LEAP @ How did we compute
GRNBOOST2 stability? “We repeated this
GRISLI procedure on ten different
GRNVBEM sampled parameter sets to
SCNS obtain 50 datasets.” For
<coDE each (algorithm, synthetic
network) pair, computed
[ D [ L Jaccard coefficient of all pairs
Low/Poor High/Good Low/Poor HighiGeed of GRNss from top-k edges.
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Other Analyses:

@ Earlier results were for 2,000 cells.
@ We also sampled 100, 500, 1,000, and 5,000 cells as well.
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Other Analyses: Effect of Number of Cells

@ Earlier results were for 2,000 cells.
@ We also sampled 100, 500, 1,000, and 5,000 cells as well.
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Other Analyses: Effect of Number of Cells

@ Earlier results were for 2,000 cells.
@ We also sampled 100, 500, 1,000, and 5,000 cells as well.

#cells | SINCERITIES SCRIBE SINGE PPCOR PIDC GENIE3

compared

100-5K | 9.2 x 1010 79x10°% 29x107% 53x10% 82x10"% 1.0

200-5K | 3 x 1079 25x1075 27x107% 25x10°% 26x1075 1.0

500-5K | 6.9 x 108 0.30 0.35 24x107% 29x10"2 067

2K-5K | 0.12 0.71 0.31 0.35 0.40 1.0

# cells | LEAP  GRNBoost2  GRISLI GRNVBEM SCNS SCODE
compared

100-5K | 1.0 56 x10~% 23x10°3 1.0 1.0 1.0

200-5K | 1.0 2.x 1074 0.41 1.0 1.0 1.0

500-5K | 1.0 57x107% 059 1.0 0.91 0.88

2K-5K | 1.0 0.87 1.0 1.0 0.66 1.0
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

Other Analyses: Effect of Number of Cells

@ Earlier results were for 2,000 cells.
@ We also sampled 100, 500, 1,000, and 5,000 cells as well.

#cells | SINCERITIES SCRIBE SINGE PPCOR PIDC GENIE3

compared

100-5K | 9.2 x 1010 79x10°% 29x107% 53x10% 82x10"% 1.0

200-5K | 3 x 1079 25x1075 27x107% 25x10°% 26x1075 1.0

500-5K | 6.9 x 108 0.30 0.35 24x107% 29x10"2 067

2K-5K | 0.12 0.71 0.31 0.35 0.40 1.0

# cells | LEAP  GRNBoost2  GRISLI GRNVBEM SCNS SCODE
compared

100-5K | 1.0 56 x10~% 23x10°3 1.0 1.0 1.0

200-5K | 1.0 2.x 1074 0.41 1.0 1.0 1.0

500-5K | 1.0 57x107% 059 1.0 0.91 0.88

2K-5K | 1.0 0.87 1.0 1.0 0.66 1.0

o Fidelity of simulations from inferred GRNs (Supplementary Note 1.4)
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data

Other Analyses: Effect of Number of Cells

@ Earlier results were for 2,000 cells.
@ We also sampled 100, 500, 1,000, and 5,000 cells as well.

#cells | SINCERITIES SCRIBE SINGE PPCOR PIDC GENIE3

compared

100-5K | 9.2 x 1010 79x10°% 29x107% 53x10% 82x10"% 1.0

200-5K | 3 x 1079 25x1075 27x107% 25x10°% 26x1075 1.0

500-5K | 6.9 x 108 0.30 0.35 24x107% 29x10"2 067

2K-5K | 0.12 0.71 0.31 0.35 0.40 1.0

# cells | LEAP  GRNBoost2  GRISLI GRNVBEM SCNS SCODE
compared

100-5K | 1.0 56 x10~% 23x10°3 1.0 1.0 1.0

200-5K | 1.0 2.x 1074 0.41 1.0 1.0 1.0

500-5K | 1.0 57x107% 059 1.0 0.91 0.88

2K-5K | 1.0 0.87 1.0 1.0 0.66 1.0

o Fidelity of simulations from inferred GRNs (Supplementary Note 1.4)
e Effect of using trajectory information (Supplementary Note 1.5)
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Curated Models

Input Type 2: Curated Models
Simulated data from curated models
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

Input Type 2: Curated Models
Simulated data from curated models

@ What was our motivation for curating Boolean models?
» Simple structures of synthetic networks may be unrealistic.
» Existing simulators (e.g., GeneNetWeaver) simulate dense subnetworks
of large-scale GRNs grown around random seeds.

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Introduction Synthetic Networks

Curated Models

Experimental sc-RNA Seq Data

Input Type 2: Curated Models
Simulated data from curated models

@ We selected four published Boolean models:
@ Mammalian cortical area development (mCAD).
@ Ventral spinal cord (VSC) development.
© Hematopoietic stem cell (HSC) differentiation.
@ Gonadal sex determination (GSD).

Name of model | #genes #edges ##Steady States
Activation | Inhibition
mCAD 5 5 9 2
VSC 8 0 15 5
HSC 11 15 15 4
GSD 19 27 59 2

Discussion

T. M. Murali

February 20, 22, 27, March 1, 2023
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Curated Models

Example of Curated Model

A Anterior Posterior ¢
E{t 1) o NOT Pl S NOT P
E(t+1) =NOT F(t) & NOT P(t) & C(t)
& NOT S(t)
P(t+1) = NOT E(t) & NOT C(t) & S(t)
C(t+1)=NOT F(t) & NOT S(t)
S(t+1) = F(t) & NOT E(t)

F(t+1) =F(t)
E(t+1) = E(t)
P(t+1) = P(t)
C(t+1) = C(t)
S(t+1) = S(t)

B
Interaction References
Fgf8—Fgf8 52, 57, 58]
Emx2-Fgf8 20, 27], but see also [22]
Sp8—Fgf8 24, 26]
Fgf8-HEmx2 20, 21, 27, 52, 53, 54]
Pax6-4Emx2 55
Coup-tfimEmx2 | [23], but see also [28]
Sp8-HEmx2 26
Emx2-1Pax6 22, 55]
Coup-tfi-1Pax6 23, 28]
Sp8—Pax6 26]
Fgf8+Coup-tfi 20, 21, 27], but see also [54]
Sp8-iCoup-tfi 26]
Fgf8—Sp8 24], but see also [27, 54]
Emx2-1Sp8 24, 27]

Giacomantonio and Goodhill, A Boolean model of the gene regulatory network underlying mammalian cortical area development,
PLoS Comput. Biol., 2010.

February 20, 22, 27, March 1, 2023 BEELINE



Curated Models

Example of Curated Model

A Anterior Posterior ¢
AN
E(t+1)=NOT F(t) & NOT P(t) & C(t)
{_ -5 & NOT S(t)
P(t +1) = NOT E(t) & NOT C(t) & S(t)
- C(t+1)=NOT F(t) & NOT S(t)
GFgfg _5 S(t+1) = F(t) & NOT E(t)
Ny Ft+1) = F()
'5 E(t+1) =E(t)
P(t+1) =P(t)
Ct+1)=C()
S(t+1) = S(t)
Interaction References
Fgfé—Fgf8 52, 57, 58]
only di Emx2-Fgf8 20, 27], but see also [22]
nly direct __ 3, Sp8—Fgfs 24, 26]
interaction Fofs-“Emx2 20, 21, 27, 52, 53, 54]
Possible indirect gaxG—!meZ 551
interaction —>»Coup-tfi-Emx2 | [23], but see also [28]
Sp8-Emx2 26]
Emx2-Pax6 22, 55]
Coup-tfi1Pax6 23, 28]
Sp8—Pax6 26]
Fgf8-Coup-tfi 20, 21, 27], but see also [54]
Sp8-Coup-tfi 26]
Fgf8—Sp8 24], but see also [27, 54]
Emx2-Sp8 24, 27]

Giacomantonio and Goodhill, A Boolean model of the gene regulatory network underlying mammalian cortical area development,

PLoS Comput. Biol., 2010.
T. M. Murali
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Curated Models

Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot

Y
o B
&

t-SNE 2
t-SNE 2
t-SNE 2

0 0 -20 0 20
t-SNE 1 t-SNE 1 t-SNE 1

Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))?
What did we compute in column (d)?

What do learn by comparing plots in column (c) to those in column (b)?

How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))?
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Curated Models

Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot

t-SNE 2
t-SNE 2
t-SNE 2

0 0 -20 0 20
t-SNE 1 t-SNE 1 t-SNE 1

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”
@ What did we compute in column (d)?

@ What do learn by comparing plots in column (c) to those in column (b)?

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))?
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Curated Models

Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot

15
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®

t-SNE 2
t-SNE 2
t-SNE 2

0 -20 0 20
t-SNE 1 t-SNE 1 t-SNE 1

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”

@ What did we compute in column (d)? Slingshot trajectories using clusters of
cells with #clusters = 14 #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))?

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Curated Models

Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot

t-SNE 2
t-SNE 2
t-SNE 2

0 20 0
t-SNE 1 t-SNE 1 t-SNE 1

-20 0 20

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”

@ What did we compute in column (d)? Slingshot trajectories using clusters of
cells with #clusters = 1+ #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?
Clusters of simulations (as for synthetic models) correspond well to
Slingshot trajectories.

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))?
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Curated Models

Results of Simulations

(a) Networks (b) Simulation Time

(c) Clusters

(d) Slingshot

t-SNE 2

t-SNE 2

t-SNE 2

20

0
t-SNE 1

0
t-SNE 1

-20 0 20
t-SNE 1

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”

@ What did we compute in column (d)? Slingshot trajectories using clusters of
cells with #clusters = 1+ #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?
Clusters of simulations (as for synthetic models) correspond well to

Slingshot trajectories.

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))? Correlation is high

(Supplementary Table 8).
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Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot
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t-SNE 1 t-SNE 1 t-SNE 1

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”

@ What did we compute in column (d)? Slingshot trajectories using clusters of
cells with #clusters = 14 #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?
Clusters of simulations (as for synthetic models) correspond well to
Slingshot trajectories.

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))? Correlation is high
(Supplementary Table 8).

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Results of Simulations

(@) Networks (b) Simulation Time (c) Clusters (d) Slingshot

20

10

t-SNE 2
t-SNE 2
t-SNE 2

0

-10

10 20 -10 0 10 20
t-SNE 1 t-SNE 1 t-SNE 1

@ Why did we do two types of clustering here (column (c) and “behind the
scenes” for column (d))? Read “Pseudotime inference using Slingshot.”

@ What did we compute in column (d)? Slingshot trajectories using clusters of
cells with #clusters = 1+ #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?
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Slingshot trajectories.
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correspond to simulation times of the cells (column (b))? Correlation is high
(Supplementary Table 8).
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cells with #clusters = 1+ #steady states.

@ What do learn by comparing plots in column (c) to those in column (b)?
Clusters of simulations (as for synthetic models) correspond well to
Slingshot trajectories.

@ How well do pseudotime values computed by Slingshot (column (d))
correspond to simulation times of the cells (column (b))? Correlation is high
(Supplementary Table 8).
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Further Validation of BoolODE Simulations
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Further Validation of BoolODE Simulations

Anterior
"

e Each publication o Posterior
specifies a unique gene : L ow
expression pattern that | o R
characterizes each steady @il
state of that model. o Al

o Does simulation match | ¢ .
these patterns? ’ o . .

@ Plot expression of each A7 o .
gene and visually i g 1
correlate “clusters” in - |
t-SNE plots to steady
state. : N
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BoolODE Simulations for VSC model
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_Introduction __ Synthetic Networks ___ Curates Models__ Experimental sc-RNA Seq Data Discussion
AUPRC Results for Synthetic Networks
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AUPRC Results for Curated Models
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EPR Results for Curated Models
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AUPRC and EPR Ratios
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AUPRC and EPR Ratios
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Results for Synthetic Models
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Results for Curated Models

Curated models
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Curated Models

Results for Curated Models
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Curated Models

Results for Curated Models

Curated models
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Methods that do not require pseudotime have the highest AUPRC ratios. J
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Other Analyses
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Other Analyses

o Effect of dropouts (Supplementary Note 2.3).
e Similarity across algorithms (Supplementary Note 2.4)

e Motif analysis (Supplementary Note 2.5) and indirect edges
(Supplementary Note 2.6)
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Similarity of Reconstructions
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Similarity of Reconstructions

(a) Spearman correlation
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Motifs in Inferred GRNs

(a) Network Motifs (b) Statistics of top—k edges
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Indirect Edges in Inferred GRNs

(c) Shortest path length distributions v v
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

Input Type 3: Experimental sc-RNA Seq Data
Single cell RNAseq data

@ What is the motivation? Haven't we already demonstrated GRN
methods, by and large, do not make good predictions?
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data Discussion

Input Type 3: Experimental sc-RNA Seq Data
Single cell RNAseq data

@ What is the motivation? Haven't we already demonstrated GRN
methods, by and large, do not make good predictions?

@ “The evaluation of GRN inference methods on experimental
scRNA-seq data sets is essential.”

@ “Scale the simulations to more genes and sparser networks.”

@ “Test at least the top-performing tools on real data.”
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Experimental scRNA-seq Datasets

Mouse Human
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lNestorovva, et al. (2016) “A single-cell ...”. Blood, 128, 20-31.

2Haryashi et al. (2018) “Single-cell ...” Nat. Commun,. 9, 619.

3 Shalek et al. (2014) “Single-cell RNA-seq ..." Nature, 510, 363-369.

4Camp et al. (2017) “Multilineage communication ..." Nature, 546, 533-538 .
5Chu et al. (2016) “Single-cell ..." Genome Biol, 17, 173.

February 20, 22, 27, March 1, 2023

BEELINE



Experimental sc-RNA Seq Data

aracteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

lNestorovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).
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Synthetic Networks o le s Experimental sc-RNA Seq Data

Characteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

@ Why do we need to specify starting cell type?

1Nesl‘orovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).
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Curated M Experimental sc-RNA Seq Data

Characteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

@ Why do we need to specify starting cell type?
@ Were there any multi-lineage datasets?

1Nesl‘orovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).
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Curated M Experimental sc-RNA Seq Data

Characteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

@ Why do we need to specify starting cell type?
@ Were there any multi-lineage datasets?
@ Were there any time-series datasets?

1Nesl‘orovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).
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Synthetic N orks Curated M Experimental sc-RNA Seq Data

Characteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

@ Why do we need to specify starting cell type?

@ Were there any multi-lineage datasets?

@ Were there any time-series datasets?

@ What do the numbers in “#genes’ and “#TFs" denote?

1Nesl‘orovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).
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Synthetic N orks Curated M Experimental sc-RNA Seq Data

Characteristics of scRNA-S g Datasets

Dataset Species | Starting Ending Cells | #Genes | # TFs
cell type cell type(s)

mHSC-E! Mouse HSCs Erythroid 1,071 2,634 204

mHSC-L! Lymphoid 847 692 60

mHSC-GM! Granulocyte- 889 1,595 132
Macrophage

mESC? Mouse mESCs Primitive Endoderm 421 8,150 620

mDC3 Mouse DCs Dendritic cells 383 3,755 321

hHep? Human iPSCs | Mature Hepatocytes 425 4,336 311

hESC® Human hESCs | Definitive Endoderm 758 4,406 330

@ Why do we need to specify starting cell type?

Were there any multi-lineage datasets?

Were there any time-series datasets?

What do the numbers in “#genes” and "#TFs" denote?

How did we select genes for analysis?

1Nesl‘orovva, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood (2016).

2Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.
Nat. Commun. (2018).

3Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature (2014).
4Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature (2017).

5Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive
endoderm. Genome Biol. (2016).

T. M. Murali February 20, 22, 27, March 1, 2023 BEELINE



Experimental sc-RNA Seq Data

Experimental scRNA-seq Datasets

Human

Mouse
Embryonic stem cells
B

Embryonic stem cells Dendritic cells

= -0.05 °

1.0 % .
.. 00 h (90) k-
1 72h (91).: v
05 8§
i &
§ 0.0 e ¥
e, 12h(e8) Sy - o
*:a 1 . Hematopoietic stem cells "
~05 b = | R -
; | Ls
| o -
-1.0 . ! -0.05
¥ i ,
10 -05 00 05 10 ~]

~J

DC1

No standard ground-truth networks
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Ground-Truth Networks

@ How many types of networks?
@ What was the rationale for selecting them?

@ What are the differences between these networks?
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Ground-Truth Networks

@ How many types of networks?
@ What was the rationale for selecting them?

@ What are the differences between these networks?
Q Cell-type-specific GRNs

@ Non-specific GRNs

© STRING
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Experimental sc-RNA Seq Data

Cell-Type Specific ChlP-seq Network
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Experimental sc-RNA Seq Data

Cell-Type Specific ChlP-seq Network

Genel
[TF1F cenes
Genel Gene2 ene
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TF2 binding region /

Very few TFs tested for each cell type.
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Non-Specific ChiIP-Seq Network

@ Curated TF-gene
interactions from

© RegNetwork
@ TRRUST
© DoRothEA
@ Network is the union of
these datasets.

@ 292 TFs, 1,142 genes,
4 597 interactions.

Liu et al., “RegNetwork: an integrated ..." Database, 2015
Han et al., “TRRUSTV2 ...” NAR, 46(D1):D380-D386, 2018
Garcia-Alonso et al., “Benchmark ...”, Gen. Res., 29:1363-1375, 2019
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Experimental sc-RNA Seq Data

STRING

@ Organism-specific STRING
protein interaction network

@ Both direct and indirect
interactions

@ Experimental and computed
interactions

Szklarczyk et al. (2019) “STRING v11...” NAR, 47:D607-613
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Statistics on Ground-Truth Networks

Species | Source #TFs #Genes #Edges Density
(incl. TFs)
Mouse HSC, E, L, G-M ChIP-Atlas 137 19,324 1,078,888 0.407
Mouse DC, ChIP-Atlas 36 11,092 30,658 0.077
Mouse mESC, ESCAPE+ ChIP-Atlas 247 25,703 6,348,394 0.154
Mouse mESC, LOGOF, ESCAPE 57 18,427 104,797 0.100
Mouse TRRUST + RegNetwork 1,455 17,852 100,139 0.004
Mouse STRING 1,350 7,771 157,134 0.015
Human hESC, ChEA + ChIP-Atlas 130 18,104 436,563 0.186
Human HEPG2, ChEA + ChIP-Atlas 84 16,822 342,862 0.243
Human | TRRUST + RegNetwork 2,165 23,566 386,293 0.008
+DoRothEA
Human STRING 1,489 8,806 198,285 0.015
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Running Time and Memory Usage
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Experimental sc-RNA Seq Data

Running Time and Memory Usage
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Algorithms Evaluated

@ Top five methods for synthetic networks.

@ Top five methods for curated networks.
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Algorithms Evaluated

@ Top five methods for synthetic networks.

@ Top five methods for curated networks.

@ Ignored SCRIBE and SINGE because of parameter search time.

@ Six methods left: GENIE3, GRNBoost2, PPCOR, PIDC, SCODE,
SINCERITIES.
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Introduction Synthetic ks Curated Models Experimental sc-RNA Seq Data

Results on Mouse Datasets

@ Why did we use the EPR?

@ How did we measure network density?

@ What trends did we observe in the EPR?

@ Why did PPCOR’s performance drop for experimental datasets?

TFs +500 genes TFs +1000 genes
Network Statistics EPR Network Statistics EPR
o
a&(& @62608(\‘3\ Q\OC 0(/)\\6?‘“ QCO c)\$(’ *«9 ’ \0('6(’)\ ?&g

161 427 0.03 8.1

40 86 0.05 7.2 7.2

100 357 0.04 8.5

mHSC-E 156 300 0.03 7.5
mHSC-L 39 74 0.05
STRING | mHSC-GM 92 206 0.04

499 799 0.02 3.7

273 681 0.03 .2.2

[ | [ .
Random Predictor Low/Poor High/Good

mESC 495 648 0.02

mDC 264 487 0.04
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Introduction Synthetic ks Curated Models Experimental sc-RNA Seq Data

Results on Mouse Datasets

o Why did we use the EPR?
@ How did we measure network density?
@ What trends did we observe in the EPR?

@ Why did PPCOR’s performance drop for experimental datasets?

TFs +500 genes TFs +1000 genes

Network Statistics EPR Network Statistics EPR

o < o .
£ 0o I 9,0 o o

147 680 0.02 5.7

MHSCE 144 447 0.02 5.4

mHSC-L 35 168 0.05 2.9

Non-specific

82 301 0.03 .
ChiP-Seq mHSC-GM 6.8

MESC 516 896 0.01 .3.3

88 532 0.03 5.9

mDC 250 643 0.02 2.7 2.7 254 980 0.02 3.0

37 198 0.04 3.0 3.0 3.0
522 1221 0.01 .3.5 3.5

| [ .
Random Predictor Low/Poor High/Good
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Experimental sc-RNA Seq Data Discussion

Results on Mouse Datasets

o Why did we use the EPR?

@ How did we measure network density?

@ What trends did we observe in the EPR?

o Why did PPCOR’s performance drop for experimental datasets?

TFs +500 genes TFs +1000 genes
Network Statjstjcs EPR Network Statistics EPR
N
£, o o ?00 R e o5 %o SPRS

MHSC-L 16 525 0.52 .1.11.1 1.1.

Cell-type
specific | mHSCGM 22 618 0.54 .1.1 23 1089 0.56 .1 01.01.01. 0.
ChiP-Seq mesc 88 977 0.34 fEY1.1 1.1 1.1 89 1385 0.35 .1 11. 1-

T
Random Predictor Low/Poor High/Good

33 1177 0.57 .1.0 1.0 1.0

16 640 051 .1 1.1 1-
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Introduction Synthetic Networks Curated Models Experimental sc-RNA Seq Data

Results on Human Datasets

TFs +500 genes TFs +1000 genes
Network Statjstjcs EPR Network Statistics EPR

A R

\V\C

(" hEsC 343 517 0.02 3.8 351 709 0.02 4.1
STRING
hHep 409 656 0.03 3.5 414 889 0.02 3.6
\
(
Non-specific hESC 283 760 0.02 1.9 W
ChiP-Seq hHep 322 832 0.02 332 1224 0.01
\
Celtype [ hESC 34 815 0.16 . ]
specific 30 874 038 1.2 31 1331 0.38

Random Predictor Low/Poor High/Good
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Other Analyses
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Other Analyses

@ Consensus with direct clustering of gene expression data
(Supplementary Note 3.2).

@ Gene selection strategy (Supplementary Note 3.3).
@ Stability across runs (Supplementary Note 3.4).
e Similarity across algorithms (Supplementary Note 3.5).
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Experimental sc-RNA Seq Data

Gene Selection Strategy

PIDC, GENIE3, GRNBOOST2
Evaluated on non-specific ChIP-seq and STRING networks
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Experimental sc-RNA Seq Data

Gene Selection Strategy

PIDC, GENIE3, GRNBOOST2
Evaluated on non-specific ChIP-seq and STRING networks

I

500 TFs+500 1000 TFs+1000 500 TFs+500 1000 TFs+1000

AUPRC Ratio
w IS v o

N

-

@ Only evaluated algorithms with three highest median EPR values.

@ Including all significantly-varying TFs had a statistically significant
improvement on the EPR.

@ Changing the number of genes from 500 to 1,000 did not make a significant
difference.
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Stability Across Runs

(a) Experimental single-cell RNA-seq datasets

Human mature (Camp 2017)
PN P ————— p—

0.5

Spearman's

Mouse dendritic cells (Shalek 2014)
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Similarity Across Algorithms

(a) Mouse embryonic stem cells (mESC)
500 genes 1000 genes TFs + 500 genes TFs + 1000 genes
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(b) Human definitive endoderm single-cell RNA-seq dataset (hESC)
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Similarity Across Algorithms

(a) Spearman correlation
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Wisdom of Crowds for GRN Inference (Bulk RNA-Seq

nature methods

Analysis | Published: 15 July 2012
Wisdom of crowds for robust
gene network inference

Daniel Marbach, James C Costello, Robert Kiiffner, Nicole M Vega,
Robert J Prill, Diogo M Camacho, Kyle R Allison, The DREAMS5

Consortium, Manolis Kellis, James J Collins & Gustavo Stolovitzky
&

Nature Methods 9, 796-804(2012) ‘ Cite this article

Marbach et al. Wisdom of crowds for robust gene network inference. Nat. Methods, 2012.
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Wisdom of Crowds for GRN Inference (Bulk RNA-Seq
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Wisdom of Crowds for GRN Inference (Bulk RNA-Seq
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Marbach et al. Wisdom of crowds for robust gene network inference. Nat. Methods, 2012.
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Implementing Wisdom of Crowds

Used four methods to compute ensembles.
Borda: rank of an edge = averages of its ranks computed by each
GRN inference algorithm.
mBorda: modification of the Borda method: assign a weight of 1/n?
to rank n.
sBorda: use only the three methods with the highest AUPRC or EPR.

smBorda: combine sBorda and mBorda.

Deshpande et al. Network inference with Granger causality ensembles on single-cell transcriptomic data, bioRxiv, 2019.
Marbach et al. Wisdom of crowds for robust gene network inference. Nat. Methods, 2012.
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Experimental sc-RNA Seq Data

Wisdom of Crowds for GRN Inference (scRNA-Seq)

Difference in EPR between ensemble method and best individual GRN
algorithm.
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Summary of Results and Recommendations
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Summary of Results and Recommendations
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Summary of Results and Recommendations
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Summary of Results and Recommendations
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Discussio

Summary of Results and Recommendations
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Discussion

Contributions of BEELINE

@ Framework for benchmarking algorithms that infer GRNs from
single-cell gene expression data.

o Facilitates reproducible, rigorous and extensible evaluations of GRN
inference methods.
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@ BoolODE accurately simulates Boolean models with predictable
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Discussion

Contributions of BEELINE

@ Framework for benchmarking algorithms that infer GRNs from
single-cell gene expression data.

o Facilitates reproducible, rigorous and extensible evaluations of GRN
inference methods.

@ BoolODE accurately simulates Boolean models with predictable
trajectories.

@ Recommendations to users of GRN inference algorithms.
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Contributions of BEELINE

@ Framework for benchmarking algorithms that infer GRNs from
single-cell gene expression data.

o Facilitates reproducible, rigorous and extensible evaluations of GRN
inference methods.

@ BoolODE accurately simulates Boolean models with predictable
trajectories.

@ Recommendations to users of GRN inference algorithms.

@ Software available at
https://github.com/Murali-group/BEELINE.
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BEELINE Usage in the Community

15 papers have used BEELINE (the full pipeline, Docker images,
recommendations, BoolODE).

10 papers have used datasets released or collected by BEELINE.

Most papers have developed new GRN inference algorithms.

Small number of other applications.
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BEELINE Usage in the Community

15 papers have used BEELINE (the full pipeline, Docker images,
recommendations, BoolODE).

10 papers have used datasets released or collected by BEELINE.
Most papers have developed new GRN inference algorithms.

Small number of other applications.

Time may be ripe for another benchmarking effort!
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