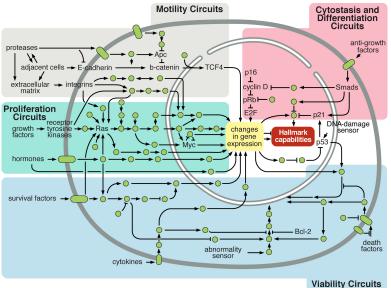
CS 5854: Supervised Inference of Gene Regulatory Networks from Single-Cell Gene Expression Data

T. M. Murali

February 16, 18, 2021

Signaling Pathways and Gene Expression



Gene Expression is a Dynamic Process

В if (F = 1 or E = 1 or CD = 1) and (Z = 1)Repression functions of modules F, E, and DC mediated by Z site $\alpha = 1$ else $\alpha = 0$ if $(P = 1 \text{ and } CG_1 = 1)$ Both P and CG, needed for synergistic link with module B $\beta = 2$ $\beta = 0$ else if $(CG_1 = 1)$ and $CG_2 = 1$ and $CG_3 = 1$ Final step up of system output $\gamma = 2$ else $\gamma = 1$ $\delta(t) = B(t) + G(t)$ Positive input from modules B and G $\varepsilon(t) = \beta^* \delta(t)$ Synergistic amplification of module B output by CG,-P subsystem if $(\varepsilon(t) = 0)$ Switch determining whether Otx site in module A. or upstream modules (i.e., $\xi(t) = Otx(t)$ mainly module B), will control level of $\xi(t) = \varepsilon(t)$ activity else if $(\alpha = 1)$ Repression function inoperative in endoderm but blocks activity elsewhere $\eta(t) = 0$

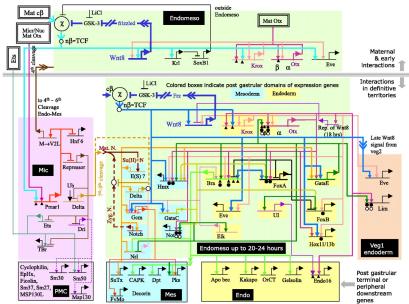
Final output communicated to BTA

else

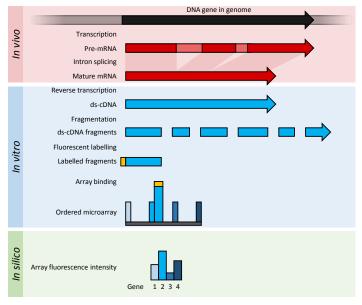
 $\Theta(t) = \gamma^* \eta(t)$

 $\eta(t) = \xi(t)$

Gene Expression is a Dynamic Process



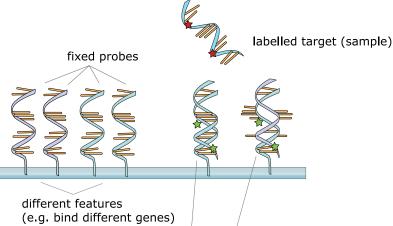
Measuring Genomewide Gene Expression: DNA Microarrays



Wikipedia

Introduction

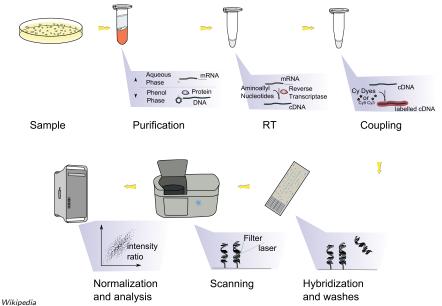
Measuring Genomewide Gene Expression: DNA Microarrays



Fully complementary strands bind strongly

Partially complementary strands bind weakly

Measuring Genomewide Gene Expression: DNA Microarrays

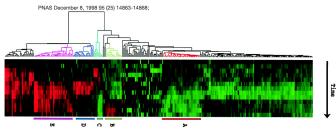


Applications of DNA Microarray Data

RESEARCH ARTICLE

Cluster analysis and display of genome-wide expression patterns

Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein



Applications of DNA Microarray Data

RESEARCH ARTICLE

Cluster analysis and display of genome-wide expression patterns

Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein

Michael Eisen 🤣

@mbeisen

Inspired by @UCSDCooperLab's question about origins of the red/green color scheme in microarray clustering, I present THE FIRST dna microarray cluster analysis made by me in 1997 for ncbi.nlm.nih.gov/m/pubmed/97841... W/handwritten notes from Pat Brown and the late Ira Herskowitz

6:27 PM · Jun 4, 2019 · Twitter for iPhone

Applications of DNA Microarray Data

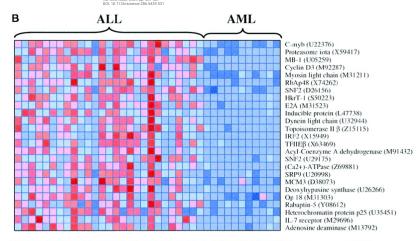
REPORT

Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

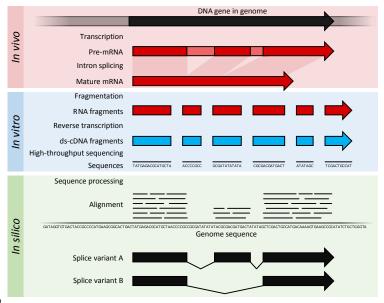
T. R. Golub^{1,2,3,4}, D. K. Slonim^{1,4}, P. Tamayo¹, C. Huard¹, M. Gaasenbeek¹, J. P. Mesirov¹, H. Coller¹, M. L. Loh², J. R. Downin...

+ See all authors and affiliations

Science 15 Oct 1999: Vol. 286, Issue 5439, pp. 531-537

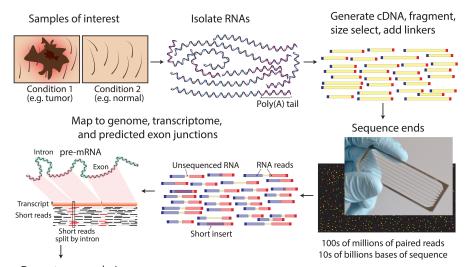


Measuring Genomewide Gene Expression: RNA-seq



Wikipedia

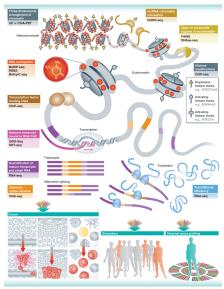
Measuring Genomewide Gene Expression: RNA-seq



Downstream analysis

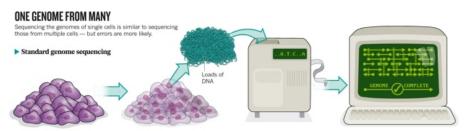
Griffith et al., Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLoS Comput Biol, 2015

*-Seq Techniques



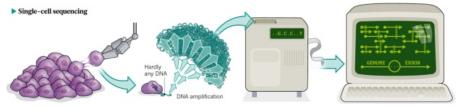
Soon, Hariharan, and Snyder. High-throughput sequencing for biology and medicine. Mol. Sys. Bio, 2013.

Single-Cell RNA-Seq



A sample containing thousands to millions of cells is isolated. DNA is extracted from all the nuclei.

DNA is broken into fragments and then sequenced. The sequences are assembled to give a common, 'consensus' sequence.



A single cell is difficult to isolate, but it can be done mechanically or with an automated cell sorter. The DNA is extracted and amplified, during which errors can creep in.

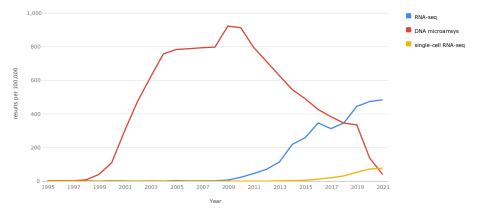
Amplified DNA is sequenced.

Errors introduced in earlier steps make sequence assembly difficult; the final sequence can have gaps.

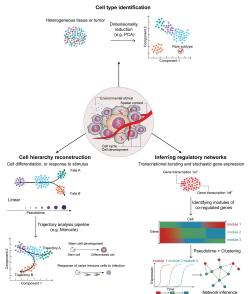
Owens, Genomics: The single life, Nature, 2012.

Technology Trends

Results per 100,000 citations in PubMed proportion for each search by year, 1995 to 2021

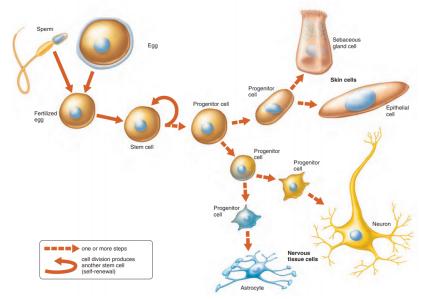


Applications of scRNA-seq Data



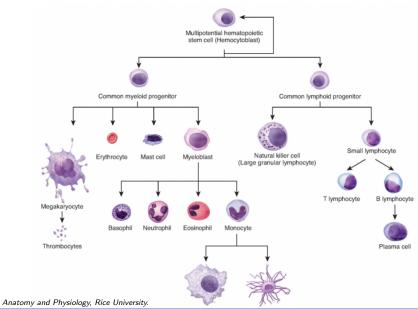
Hwang, Lee, and Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med., 2018

Cellular Differentiation



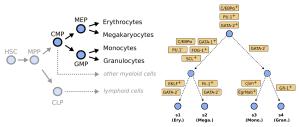
Shier et al., (2015) "Hole's Essentials of Human Anatomy and Physiology", McGraw-Hill February 16, 18, 2021

Cellular Differentiation



T. M. Murali February 16, 18, 2021 Supervised GRNs

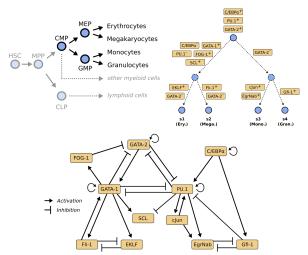
Cellular Differentiation



- Cells in different states express different sets of genes.
- Cells move from one "state" to another.

ntroduction GRNs Supervised Inference

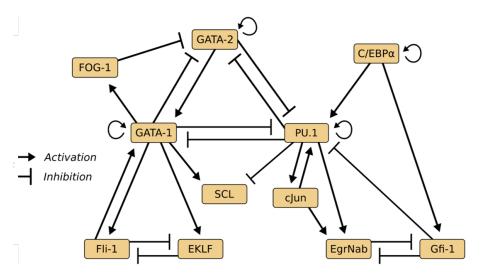
Cellular Differentiation



 Transcription factors activate/inhibit genes to effect cell transition from one state to another.

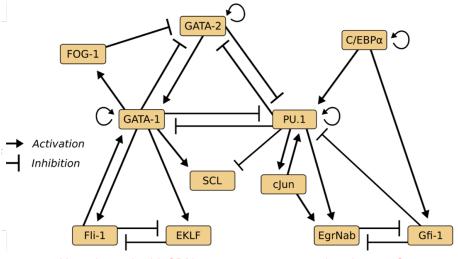
stroduction GRNs Supervised Inference

Gene Regulatory Network (GRN)



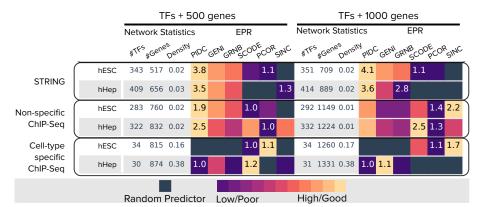
ntroduction GRNs Supervised Inference

Gene Regulatory Network (GRN)

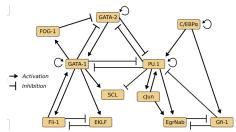


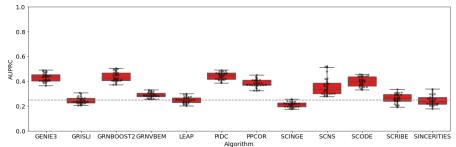
How do we build GRNs using computational techniques?

BEELINE Results for Human Datasets



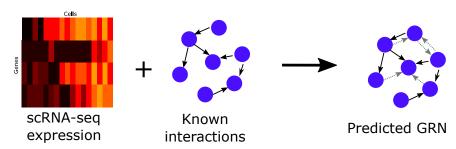
Poor AUPRC performance





Supervised GRN inference

Can supervised learning methods take advantage of known regulatory interactions for GRN inference from scRNA-seq data?



Existing approaches for supervised GRN

- Generate TF-gene features and build a classifier (e.g., SVM)
 - Concatenate expression vectors¹
 - Outer product²
 - Kernels³

¹ Cerulo et al. (2010) "Learning gene regulatory ..." BMC Bioinfo., 11(1):228

²Maetschke et al. (2014) "Supervised, semi- ..." Brief. Bioinfo., 15(2):195–211

³Cuong et al. (2008) "Supervised inference ..." BMC Bioinfo., 9(1):2

Drawbacks

Drawbacks of fixed TF-gene feature representation:

- Dropouts + noise in the input expression data
 - Dropout: where a gene is observed in one cell but is not detected in another cell of the same cell type
 - Unclear how fixed feature representation can overcome these problems

Drawbacks

Drawbacks of fixed TF-gene feature representation:

- Dropouts + noise in the input expression data
 - Dropout: where a gene is observed in one cell but is not detected in another cell of the same cell type
 - Unclear how fixed feature representation can overcome these problems
- ② Do not scale well for datasets with large number of cells

Proposed solutions

Oropouts + noise in the input expression data → Denoise and impute data using network propagation^{1 2 3}

T. M. Murali February 16, 18, 2021 Supervised GRNs

¹Ronen et al. (2018) "netSmooth ..." F1000 Res. 7.

²Ye et al. (2019) "scNPF" BMC Genomics 20, 347.

³Elyanow *et al.* (2020) "netNMF-sc ..." *Gen Res* 30.2: 195-204.

Proposed solutions

- Dropouts + noise in the input expression data → Denoise and impute data using network propagation^{1 2 3}
- ② Do not scale well for datasets with large number of cells \rightarrow Dimensionality reduction

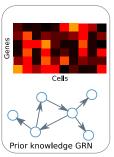
T. M. Murali February 16, 18, 2021 Supervised GRNs

¹Ronen et al. (2018) "netSmooth ..." F1000 Res. 7.

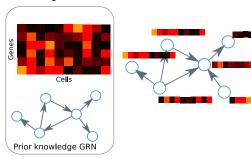
²Ye et al. (2019) "scNPF" BMC Genomics 20, 347.

³Elyanow *et al.* (2020) "netNMF-sc ..." *Gen Res* 30.2: 195-204.

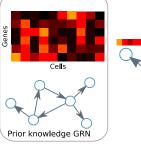
Inputs

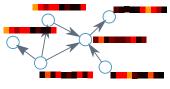


Inputs

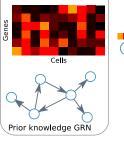


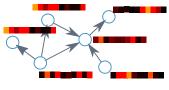
Inputs

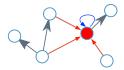




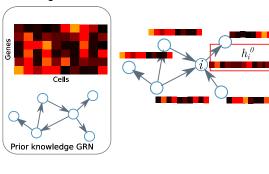
Inputs

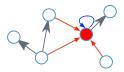




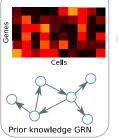


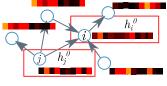
Inputs

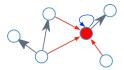




Inputs

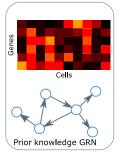


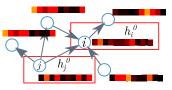




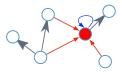
Denoising the input data

Inputs





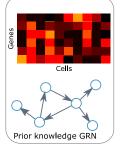
Update expression vector for gene in red

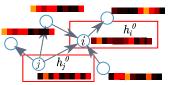


Update:
$$h_i = h_i^0 w_0 + \sum_{j \in N_i} h_j^0 w_1$$

Denoising the input data

Inputs



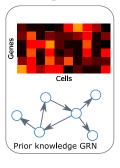


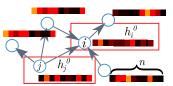
Update expression vector for gene in red

Update:
$$h_i^1 = h_i^0 W_0 + \sum_{j \in N_i} h_j^0 \overline{W_1}$$

Reducing dimensions of the input data

Inputs



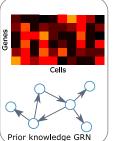


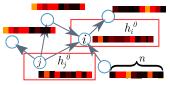
Update: $h_i^1 = h_i^0 W_0 + \sum\limits_{j \in N_i} h_j^0 W_1$

Update expression vector for gene in red

$$|W| = n \times k, k < n$$

Inputs





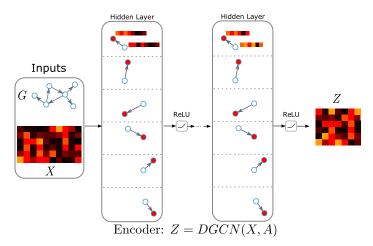
Update: $h_i^1 = h_i^0 W_0 + \sum_{j \in N_i} h_j^0 W_1$

Update expression vector for gene in red

$$|W| = n \times k, k < n$$

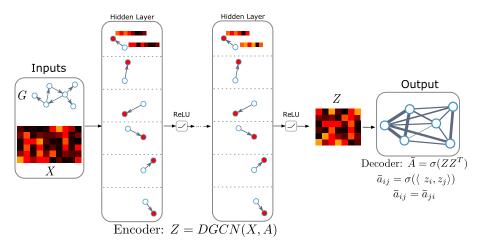
Graph convolutional networks (GCNs)

GCN-based Autoencoders



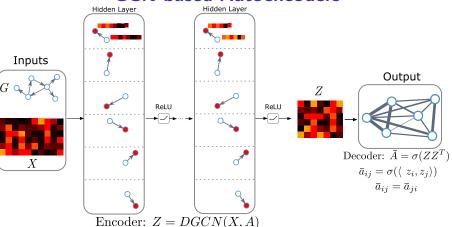
Kipf et al. (2016) "Semi-supervised classification with graph ...", CoRR, 1609.02907.

GCN-based Autoencoders



Kipf et al. (2016) "Semi-supervised classification with graph ...", CoRR, 1609.02907.

GCN-based Autoencoders

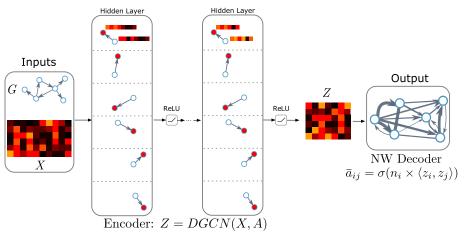


Learning objective: minimize the cross-entropy loss between A and \bar{A}

$$\mathcal{L} = rac{1}{|E|}igg(-\sum_{(i,j)\in E}\logar{a}_{ij} - \sum_{(p,q)\inar{E}}\log(1-ar{a}_{pq})igg)$$

Kipf et al. (2016) "Semi-supervised classification with graph ...", CoRR, 1609.02907.

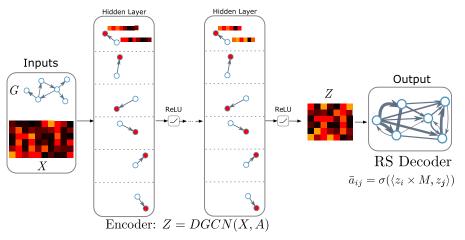
Directed GCN + Node Weight Decoder (NW)



 n_i : Learned node weight for node i

ntroduction GRNs Supervised Inference

Directed GCN + RESCAL Decoder (RS)¹



M: Learned weight matrix

¹Nickel et al. (2012) "Factorizing YAGO...", In Proc. WWW, pp. 271–280

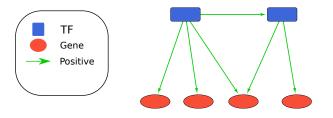
Variants of GCN-based Autoencoders

Six encoder-decoder combinations:

- Encoders
 - Undirected GCN-based encoder (GCN)
 - Directed GCN-based encoder (DGCN)
- Decoders
 - ▶ Inner Product decoder (IP)
 - Node Weight decoder (NW)
 - RESCAL Decoder (RS)

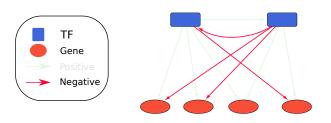
Evaluation

- k-fold cross validation: Edges, TFs
- Positive edges: TF-gene edges present in the input GRN G = (V, E)



Evaluation

- k-fold cross validation: Edges, TFs
- Positive edges: TF-gene edges present in the input GRN G = (V, E)
- Negative edges: TF-gene edges not in G



10-Fold Edge Holdout Cross-Validation

- Randomly partition positive edges into 10 sets
- Holdout one set of edges as testing positives
- Use the remaining edges as training positives
- Sample uniformly at random as many training (testing) negatives as there are training (testing) positives

10-Fold TF Holdout Cross-Validation

- Randomly partition TF nodes in the GRN into 10 sets
- Holdout one set of TFs and all the edges adjacent to them in the GRN as testing positives
- Use the remaining edges in the GRN as training positives
- How do we sample negatives?

10-Fold TF Holdout Cross-Validation

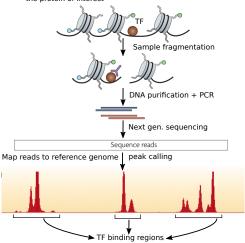
- Randomly partition TF nodes in the GRN into 10 sets
- Holdout one set of TFs and all the edges adjacent to them in the GRN as testing positives
- Use the remaining edges in the GRN as training positives
- How do we sample negatives? For each TF, we randomly sample as many negatives as there are positives adjacent to that TF, once for the set training and once for the testing set.

Ground-Truth Networks

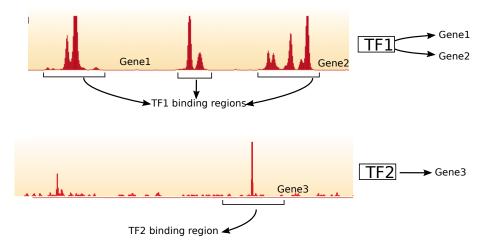
- Cell-type specific ChIP-seq network
- Non-specific ChIP-seq network

ChIP-seq

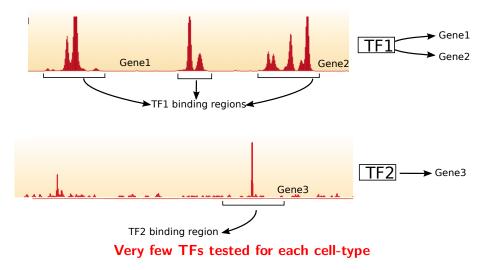
Chromatin: any protein interacting with DNA, e.g., TF Immuno**P**recipitation: enrichment of DNA bound to the protein of interest



ChIP-seq

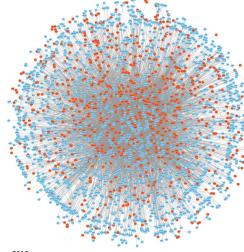


Cell-type specific ChIP-seq network



Non-specific ChIP-seq network

- Collected curated TF-gene interactions from
 - RegNetwork¹
 - 2 TRRUST²
 - ORothEA³



^{1.} Liu et al. (2015) "RegNetwork: an integrated ..." Database, 2015

3. Garcia-Alonso et al. (2019) "Benchmark ..." Gen. Res., 29:1363-1375

^{2.} Han et al. (2018) "TRRUSTv2 ..." NAR, 46(D1):D380-D386

Gene Expression Datasets

Name	#Cells	#Nodes	#Edges	# TFs
mESC ¹	471	896	6,893	516
mHSC ²	3,175	4,158	17,309	445
mMac ³	6,283	7,428	35,347	747
hESC ⁴	758	1,142	4,597	292

¹Hayashi et al. (2018) "Single-cell full-length..." Nat Comm, 9, 619

²Nestorowa et al. (2016) "A Single-Cell Resolution..." Blood, 128(8):e20-31

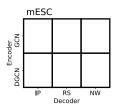
³Alavi et al. (2018) "A web server for..." Nat Comm, 9, 4768

⁴Chu *et al.* "Single-cell RNA-seq reveals ... *Genome Biology*, 17(1), 173

T. M. Murali February 16, 18, 2021 Supervised GRNs

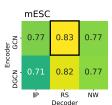
• Median test early precision from 10-fold evaluations

(a) 10-fold edge CV



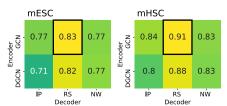
- Median test early precision from 10-fold evaluations
- GCN-RS performs the best for 10-fold edge cross-validation

(a) 10-fold edge CV



- Median test early precision from 10-fold evaluations
- GCN-RS performs the best for 10-fold edge cross-validation

(a) 10-fold edge CV

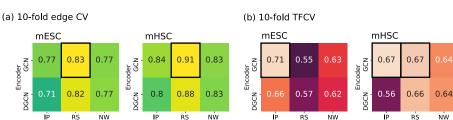


Median test early precision from 10-fold evaluations

Decoder

Decoder

- GCN-RS performs the best for 10-fold edge cross-validation
- GCN-IP performs the best for 10-fold TF cross-validation



Decoder

Decoder

Methods evaluated

• For 10-fold edge CV: **GCN-RS** autoencoder

• For 10-fold TF CV: GCN-IP autoencoder

¹Yuan (2020) "Deep learning for inferring ..." *PNAS*, 116 (52) 27151-27158

Methods evaluated

- For 10-fold edge CV: GCN-RS autoencoder
- For 10-fold TF CV: GCN-IP autoencoder
- CNNC¹: CNN-based method that uses normalized empirical probability function (NEPDF) as features for every pair of genes
- MLP-C: a multi-layer perceptron with as many hidden layers as in the GCN and with concatenated expression vectors as input features
- SVM-C: Linear SVM with concatenated expression vectors as input features

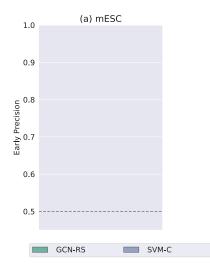
¹Yuan (2020) "Deep learning for inferring . . . " PNAS, 116 (52) 27151-27158

Methods evaluated

- For 10-fold edge CV: GCN-RS autoencoder
- For 10-fold TF CV: GCN-IP autoencoder
- CNNC¹: CNN-based method that uses normalized empirical probability function (NEPDF) as features for every pair of genes
- MLP-C: a multi-layer perceptron with as many hidden layers as in the GCN and with concatenated expression vectors as input features
- SVM-C: Linear SVM with concatenated expression vectors as input features
- GRNBoost2: One of the top performing unsupervised learning methods from BEELINE (baseline)

¹Yuan (2020) "Deep learning for inferring . . . " PNAS, 116 (52) 27151-27158

Evalutation: 10-fold edge cross-validation



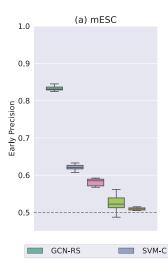
T. M. Murali February 16, 18, 2021 <u>Supervised GRNs</u>

CNNC

MLP-C

GRNBoost2

Evalutation: 10-fold edge cross-validation



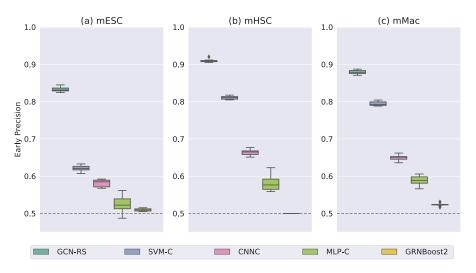
T. M. Murali February 16, 18, 2021 Supervised GRNs

CNNC

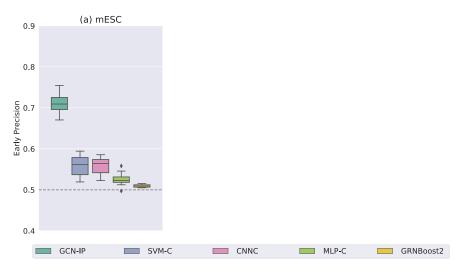
MLP-C

GRNBoost2

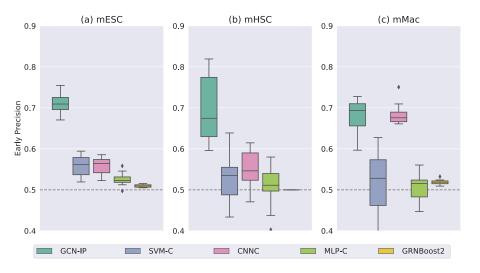
Evalutation: 10-fold edge cross-validation



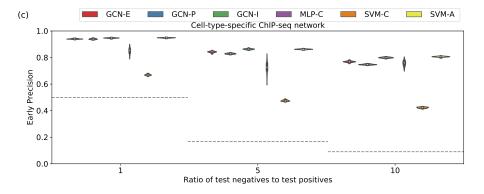
Evalutation: 10-fold TF-holdout cross-validation



Evalutation: 10-fold TF-holdout cross-validation



Evaluation: mESC ChIP-seq network



Case Study: hESC scRNA-seq dataset ³

Human embryonic stem cell dataset (hESC)

Dataset	#Cells	#Nodes	#Edges	# TFs
hESC	758	1,142	4,597	292

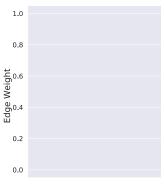
- Ground-truth network: Non-cell-type specific ChIP-seq network^{1 2}
- Training set-up:
 - GCN-RS-E
 - ▶ Positives: Edges in the human non-specific ChIP-seq network
 - ► Negatives: All possible TF-gene edges that not in the human non-specific ChIP-seq network

¹Liu et al. (2015) "RegNetwork: an integrated ..." Database, 2015

²Han et al. (2108) "TRRUSTv2 ..." Nucleic Acids Res., 46(D1):D380–D386

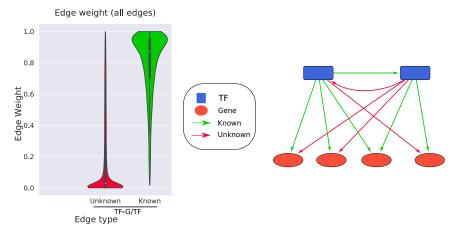
³hesc-single-cell-genbio-december-2016

Predicted network: Edge weight distribution

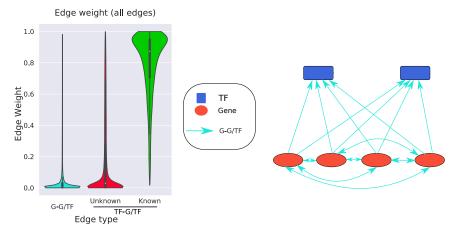


Edge type

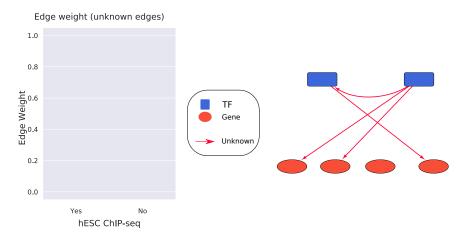
Predicted network: Edge weight distribution



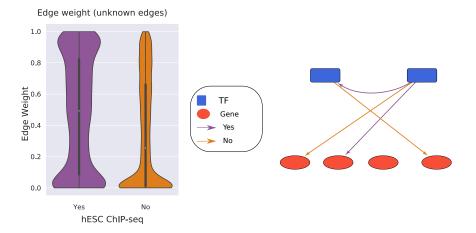
Predicted network: Edge weight distribution



Unknown Edges: hESC cell-type specific network



Unknown Edges: hESC cell-type specific network



Summary

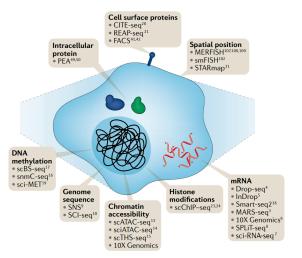
- GCN-based autoencoders are useful for denoising and reducing dimensions
- We use GCN-based autoencoders to train model for supervised GRN inference

Summary

- GCN-based autoencoders are useful for denoising and reducing dimensions
- We use GCN-based autoencoders to train model for supervised GRN inference
- GCN-autoencoder outperforms other methods for supervised GRN inference
- Can identify cell-type specific regulatory interactions even when trained on non-cell type specific GRN

Future Research

• Integrative single-cell analysis



Stuart et al..(2019) "Integrative single-cell..." Nat Rev Genet 20, 257-272.