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Introduction

Gene Expression is a Dynamic Process

B

if(F=1orE=1orCD=1)and(Z=1)
a=1

else a=0

if(P=1and CG, =1)
B=2

else B=0

if (CG,=1and CG, =1 and CG, = 1)
=2

else v=1

8(t) = B(t) + G(t)

£(t) = p*3(t)

if (e(t) = 0)
&(t) = Otx(t)

else  E(t) = &(t)

if (a=1)
nt)=0

else  n(t)=E(t)

o(t) = y'n()

Repression functions of modules F, E, and
DC mediated by Z site

Both P and CG, needed for synergistic link
with module B

Final step up of system output

Positive input from modules B and G

Synergistic amplification of module B
output by CG,-P subsystem

Switch determining whether Otx site in
module A, or upstream modules (i.e.,
mainly module B), will control level of
activity

Repression function inoperative in
endoderm but blocks activity elsewhere

Final output communicated to BTA
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Introduction

Gene Expression is a Dynamic Process
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Introduction

Measuring Genomewide Gene Expression: DNA Microarrays

DNA gene in genome I
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Array binding

In vitro

Ordered microarray
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In silico

Gene 1234
Wikipedia
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Introduction

Measuring Genomewide Gene Expression: DNA Microarrays
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Introduction

Measuring Genomewide Gene Expression: DNA Microarrays
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Introduction Supervised Inference

Applications of DNA Microarray Data

Cluster analysis and display of genome-wide
expression patterns

Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein

PNAS December 8, 1998 95 (25) 14863-14868;
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Applications of DNA Microarray Data

RESEARCH ARTICLE

Cluster analysis and display of genome-wide
expression patterns

Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein
PNAS D¢ ~\ Michael Eisen &
@mbeisen

Inspired by @UCSDCooperLab's question about origins
of the red/green color scheme in microarray clustering, |
present THE FIRST dna microarray cluster analysis made
by me in 1997 for ncbi.nlm.nih.gov/m/pubmed/97841...
w/handwritten notes from Pat Brown and the late Ira

Herskowitz.

6:27 PM - Jun 4, 2019 - Twitter for iPhone
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Applications of DNA Microarray Data

Molecular Classification of Cancer: Class Discovery
and Class Prediction by Gene Expression Monitoring

T.R. Golub'%"", D. K. Slonim'-", P. Tamayo', C. Huard', M. Gaasenbeek', J. P. Mesirov', H. Coller’, M. L. Loh?, J. R. Downin...
+See all authors and afflations
Science 15 0ct 1999

Vol. 286, Issue 5439, pp. 531-537
DOI; 10.1126/science 286 5439.531
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Measuring Genomewide Gene Expression: RNA-seq
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Introduction

Measuring Genomewide Gene Expression: RNA-seq

Samples of interest Isolate RNAs Generate cDNA, fragment,

W

Condition 1 Condition 2 M’W\/\./WWV\WM : _'- - _' o - A .
(e.g. tumor) (e.g. normal) " T N

Poly(A) tail |
Map to genome, transcriptome,

and predicted exon junctions sequence ends

Intron  pre-mRNA
Exon Unsequenced RNA RNA reads
A El

Transcript
Short reads

" Short reads

7
split by intron Short insert

100s of millions of paired reads
l 10s of billions bases of sequence

Downstream analysis

Griffith et al., Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLoS Comput Biol, 2015
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Introduction

*_Seq Techniques
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Soon, Hariharan, and Snyder. High-throughput sequencing for biology and medicine. Mol. Sys. Bio, 2013.
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Single-Cell RNA-Seq

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar bo sequencing
Rhorse Troem multiple cells — bt errons ane maone likety,

» Standard genome sequencing

A samgle contalning thewsands ta DA is extracted from all the nuchei. DN, i Broken into fragments The saquences are assembled fo give a
rreions of calls is isalated. and then sequanced COMMED, 'CONNS IS Saquence,

¥ Single-cell sequencing

Hardly

H arty DNA

DNA amplification

Hsingle cwl is. difficult to isolate, but The DA is extracted and ampldied Amplified DMNA &5 sequenced, Ermars inroduced in earlier steps make
it can ba dona machanically of with disring which erars can creep in seduence assambly dificult: tha finad
an autamaied cell sorer. sequence can have gaps.

Owens, Genomics: The single life, Nature, 2012.
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Technology Trends

Results per 100,000 citations in PubMed
proportion for each search by year, 1995 to 2021
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Applications of scRNA-seq Data

Cell type identification

Heterogeneous tissue or tumor
Dimensionality
reduction
(e.g. PCA)

ponent 2.
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Hwang, Lee, and Bang, Single-cell RNA sequencing technologies and bIOIIE)rthICS pipelines, Exp. Mol. Med., 2018
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Cellular Differentiation
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Anatomy and Physiology, Rice University. V
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Cellular Differentiation

"fg’” Erythrocytes
CMP_y ~ ™ Megakaryocytes
Monocytes

Granulocytes

other myeloid cells

lymphoid cells

@ Cells in different states express different sets of genes.

@ Cells move from one “state” to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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GRNs

Cellular Differentiation

Erythrocytes
Megakaryocytes

HsC Monocytes

O - O H Granulocytes

other myeloid cells

lymphoid cells

s1 s2 s3 sa
(Ery.)  (Mega.) (Mono.)  (Gran.)

. C/EBPa
o)

—> Activation
—| inhibition

@ Transcription factors activate/inhibit genes to effect cell transition from one
state to another.
Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE

February 16, 18, 2021 Supervised GRNs



GRNs

Gene Regulatory Network (GRN)
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Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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GRNs

Gene Regulatory Network (GRN)
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How do we build GRNs using computational techniques?

Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
T. M. Murali February 16, 18, 2021 Supervised GRNs



BEELINE Results for Human Datasets

TFs + 500 genes TFs + 1000 genes
Network Statistics EPR Network Statistics EPR

e o < 5
€05 o0 B 0o e o ot @B o

hESC 343 517 0.02 3.8 351 709 0.02 4.1
STRING
hHep 409 656 0.03 3.5 414 889 0.02 3.6_

hESC 283 760 0.02 1.9 292 1149 0.01

Y

Non-specific

ChIP-Seq hHep 322 832 0.02 332 1224 0.01

'

Cell-type hESC 34 815 0.16 34 1260 0.17

1.1
specific

Random Predictor Low/Poor High/Good
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Introduction GRNs Supervised Inference

Supervised GRN inference

Can supervised learning methods take advantage of known regulatory
interactions for GRN inference from scRNA-seq data?

+ (::.’ — .};’

scRNA-seq Known
expression interactions

Cells

Genes

Predicted GRN
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Existing approaches for supervised GRN

o Generate TF-gene features and build a classifier (e.g., SVM)
» Concatenate expression vectors!
» Outer product?
» Kernels®

! Cerulo et al. (2010) “Learning gene regulatory ...” BMC Bioinfo., 11(1):228
2Maetschke et al. (2014) "Supervised, semi- ..." Brief. Bioinfo., 15(2):195-211
3Cuong et al. (2008) “Supervised inference ...” BMC Bioinfo., 9(1):2

T. M. Murali February 16, 18, 2021 Supervised GRNs



Drawbacks

Drawbacks of fixed TF-gene feature representation:
© Dropouts + noise in the input expression data

» Dropout: where a gene is observed in one cell but is not detected in
another cell of the same cell type
» Unclear how fixed feature representation can overcome these problems

T. M. Murali February 16, 18, 2021 Supervised GRNs



Drawbacks

Drawbacks of fixed TF-gene feature representation:
© Dropouts + noise in the input expression data

» Dropout: where a gene is observed in one cell but is not detected in
another cell of the same cell type
» Unclear how fixed feature representation can overcome these problems

@ Do not scale well for datasets with large number of cells

T. M. Murali February 16, 18, 2021 Supervised GRNs



Proposed solutions

© Dropouts + noise in the input expression data — Denoise and impute
data using network propagation! 2 3

'Ronen et al. (2018) “netSmooth ..." F1000 Res. 7.
2Ye et al. (2019) “scNPF " BMC Genomics 20, 347.
3Elyanow et al. (2020) "netNMF-sc ..." Gen Res 30.2: 195-204.
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Proposed solutions

© Dropouts + noise in the input expression data — Denoise and impute
data using network propagation! 2 3

@ Do not scale well for datasets with large number of cells —
Dimensionality reduction

'Ronen et al. (2018) “netSmooth ..." F1000 Res. 7.
2Ye et al. (2019) “scNPF " BMC Genomics 20, 347.
*Elyanow et al. (2020) "netNMF-sc ..." Gen Res 30.2: 195-204.
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Supervised Inference

Denoising the input data

Inputs

Prior knowledge GRN
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Supervised Inference

Denoising the input data

Inputs

Prior knowledge GRN
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Supervised Inference

Denoising the input data

Inputs Update expression

vector for gene in red
- f—
.W_

Prior knowledge GRN
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Supervised Inference

Denoising the input data

Inputs Update expression
vector for gene in red

: an \gi

Genes

Prior knowledge GRN
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Supervised Inference

Denoising the input data

Update expression

Inputs
( \ vector for gene in red

S

Genes

\_Prior knowledge GRN ~ /

Supervised GRNs
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Supervised Inference

Denoising the input data

Inputs Update expression
vector for gene in red
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Prior knowledge GRN
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Supervised Inference

Denoising the input data

Inputs Update expression
vector for gene in red

S . (T- C

J hja \O

Update: h; = hwo + > hjw
JEN;

Prior knowledge GRN
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Supervised Inference

Denoising the input data

Inputs Update expression
vector for gene in red

i ‘b

\) Update: ht = h9Wo + 3 hOW,
Prior knowledge GRN JEN;

Genes
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Supervised Inference

Reducing dimensions of the input data

Inputs

Genes

he

Prior knowledge GRN

Update: hj = h{Wo + 3~ hiWy
JEN;

Update expression
vector for gene in red

e
kS

[W|=nxkk<n

T. M. Murali
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Supervised Inference

Inputs Update expression
vector for gene in red

— ] oo
PALE & “—
kS

. 0 n
i h

Genes

Update: hl = hOW, + 3 hOW,

Prior knowledge GRN JEN;

Graph convolutional networks (GCNs)

Kipf et al. (2016) “Semi-supervised classification with graph ...", CoRR, 1609.02907.
T. M. Murali February 16, 18, 2021 Supervised GRNs



GCN-based Autoencoders

Hidden Layer Hidden Layer
- H - e |
N - .\O oEm

o/o ReLU O/O RelU
------ SE

o’
o’

— N
Encoder: Z = DGCN(X, A)

Kipf et al. (2016) “Semi-supervised classification with graph ...", CoRR, 1609.02907.
T. M. Murali February 16, 18, 2021
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Supervised Inference

GCN-based Autoencoders

Hidden Layer Hidden Layer
e |

Decoder: A =o(Z27)
aij = o(( 2, 2))
Gij = Aji

N S

— N
Encoder: Z = DGCN(X, A)

Kipf et al. (2016) “Semi-supervised classification with graph ...", CoRR, 1609.02907.
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Supervised Inference

GCN-based Autoencoders
Hidden Layer Hidden Layer

||
r
:

I I Output

AAAAA O/O ReLU O/O RelU
SEREEY 1

C{. C/. Decoder: A =0(ZZ7)
ai; = o(( 2, 25))

Qjj = Qj;

o’
o’

— 7/ %
Encoder: Z = DGCN (X, A)
Learning objective: minimize the cross-entropy loss between A and A

|E|( Y loga— Y |0g(1—§pq)>

(iJ)EE (p.q)€E
Kipf et al. (2016) “Semi-supervised classification with graph ...", CoRR, 1609.02907.
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Supervised Inference

Directed GCN + Node Weight Decoder (NW)

Hidden Layer Hidden Layer
- § - CH -
R

./O ReLU
...... o\._’

d'. d’ NW Decoder

Q;j = J(n,‘ X (Zi,2j>)

.

N %
Encoder: Z = DGCN(X, A)

n;: Learned node weight for node i
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Supervised Inference

Directed GCN + RESCAL Decoder (RS)!

Hidden Layer Hidden Layer
B - N .
= q\O iEEm

I I Output

RS Decoder
----------------------------- ai; = o((zi x M, zj))

«’
o’

— Y N
Encoder: Z = DGCN (X, A)

M: Learned weight matrix

!Nickel et al. (2012) “Factorizing YAGO... ", In Proc. WWW, pp. 271-280

T. M. Murali February 16, 18, 2021 Supervised GRNs



Variants of GCN-based Autoencoders

Six encoder-decoder combinations:
@ Encoders
» Undirected GCN-based encoder (GCN)
» Directed GCN-based encoder (DGCN)
@ Decoders
> Inner Product decoder (IP)

» Node Weight decoder (NW)
» RESCAL Decoder (RS)

T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

Evaluation

@ k-fold cross validation: Edges, TFs
o Positive edges: TF-gene edges present in the input GRN G = (V, E)

B oTF
‘ Gene

—> Positive

T. M. Murali February 16, 18, 2021 Supervised GRNs



Evaluation

@ k-fold cross validation: Edges, TFs
o Positive edges: TF-gene edges present in the input GRN G = (V, E)
@ Negative edges: TF-gene edges not in G

B r
‘ Gene

—>» Negative

T. M. Murali February 16, 18, 2021 Supervised GRNs



10-Fold Edge Holdout Cross-Validation

Randomly partition positive edges into 10 sets
Holdout one set of edges as testing positives

Use the remaining edges as training positives

Sample uniformly at random as many training (testing) negatives as
there are training (testing) positives

T. M. Murali February 16, 18, 2021 Supervised GRNs



10-Fold TF Holdout Cross-Validation

Randomly partition TF nodes in the GRN into 10 sets

Holdout one set of TFs and all the edges adjacent to them in the
GRN as testing positives

Use the remaining edges in the GRN as training positives

@ How do we sample negatives?

T. M. Murali February 16, 18, 2021 Supervised GRNs



10-Fold TF Holdout Cross-Validation

@ Randomly partition TF nodes in the GRN into 10 sets

@ Holdout one set of TFs and all the edges adjacent to them in the
GRN as testing positives

@ Use the remaining edges in the GRN as training positives

@ How do we sample negatives? For each TF, we randomly sample as
many negatives as there are positives adjacent to that TF, once for
the set training and once for the testing set.

T. M. Murali February 16, 18, 2021 Supervised GRNs



Ground-Truth Networks

o Cell-type specific ChlP-seq network

@ Non-specific ChlP-seq network

T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

ChlIP-seq

Chromatin: any protein interacting with DNA, e.g., TF
ImmunoPrecipitation: enrichment of DNA bound to
the protein of interest

TF

Sample fragmentation

He A

DNA purification + PCR

l Next gen. sequencing

‘ Sequence reads |

Map reads to reference genomel peak calling

~ TF binding regions /

February 16, 18, 2021 Supervised GRNs



Supervised Inference

ChlIP-seq

Genel

[TF1FL cenea

_ Genel Gene2 ene
—>»TF1 blndlng reglon

LL —»Gene3
FWYS o B n A o~ ol e B aamen man amn A o an ]

TF2 binding region /
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Supervised Inference

Cell-type specific ChlP-seq network

Genel
[TF1F cenes
Genel Gene2 ene

TF1 blndlng reglon

—>Gene3
A AR A.LA.A....A o Y L

namen nanamn A o - = Aam ok

TF2 binding region /

Very few TFs tested for each cell-type
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Non-specific ChlP-seq network

o Collected curated TF-gene
interactions from

© RegNetwork!
@ TRRUST?
© DoRothEA3

1. Liu et al. (2015) “RegNetwork: an integrated ..." Database, 2015
2. Han et al. (2018) “TRRUSTv2 ..."” NAR, 46(D1):D380-D386
3. Garcia-Alonso et al. (2019) “Benchmark ...” Gen. Res., 29:1363-1375

T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

Gene Expression Datasets

Name | #Cells | #Nodes | #Edges | # TFs
mESC! 471 896 6,893 516
mHSC? | 3,175 4,158 | 17,309 445
mMac3 6,283 7,428 | 35,347 747
hESC* 758 1,142 4,597 202

'Hayashi et al. (2018) “Single-cell full-length...” Nat Comm, 9, 619
?Nestorowa et al. (2016) “A Single-Cell Resolution...” Blood, 128(8):e20-31
3Alavi et al. (2018) “A web server for...” Nat Comm, 9, 4768
*Chu et al. "Single-cell RNA-seq reveals ... Genome Biology, 17(1), 173
T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

Best GCN-based autoencoder architecture

@ Median test early precision from 10-fold evaluations

(a) 10-fold edge CV
mESC

GCN

Encoder

DGCN

P RS NW
Decoder

Supervised GRNs
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Supervised Inference

Best GCN-based autoencoder architecture

@ Median test early precision from 10-fold evaluations
@ GCN-RS performs the best for 10-fold edge cross-validation

(a) 10-fold edge CV
mESC

0.82

RS
Decoder
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Supervised Inference

Best GCN-based autoencoder architecture

@ Median test early precision from 10-fold evaluations
@ GCN-RS performs the best for 10-fold edge cross-validation

(a) 10-fold edge CV
mESC mHSC

GCN

Encoder

0.88

0.82

DGCN

P RS NW

Decoder

RS NW
Decoder
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Supervised Inference

Best GCN-based autoencoder architecture

@ Median test early precision from 10-fold evaluations
@ GCN-RS performs the best for 10-fold edge cross-validation
@ GCN-IP performs the best for 10-fold TF cross-validation

(a) 10-fold edge CV (b) 10-fold TFCV
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Methods evaluated

o For 10-fold edge CV: GCN-RS autoencoder
@ For 10-fold TF CV: GCN-IP autoencoder

Yuan (2020) “Deep learning for inferring ..." PNAS, 116 (52) 27151-27158
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Introduction Supervised Inference

Methods evaluated

For 10-fold edge CV: GCN-RS autoencoder
For 10-fold TF CV: GCN-IP autoencoder

CNNC!: CNN-based method that uses normalized empirical
probability function (NEPDF) as features for every pair of genes

@ MLP-C: a multi-layer perceptron with as many hidden layers as in
the GCN and with concatenated expression vectors as input features

@ SVM-C: Linear SVM with concatenated expression vectors as input
features

Yuan (2020) “Deep learning for inferring ..." PNAS, 116 (52) 27151-27158
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Supervised Inference

Methods evaluated

o For 10-fold edge CV: GCN-RS autoencoder
@ For 10-fold TF CV: GCN-IP autoencoder

@ CNNC!: CNN-based method that uses normalized empirical
probability function (NEPDF) as features for every pair of genes

@ MLP-C: a multi-layer perceptron with as many hidden layers as in
the GCN and with concatenated expression vectors as input features

@ SVM-C: Linear SVM with concatenated expression vectors as input
features

@ GRNBoost2: One of the top performing unsupervised learning
methods from BEELINE (baseline)

Yuan (2020) “Deep learning for inferring ..." PNAS, 116 (52) 27151-27158
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Evalutation: 10-fold edge cross-validation
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Evalutation: 10-fold edge cross-validation

10 (a) mESC

0.9

o
o

e
N

Early Precision

o
o

I GCN-RS S SsvM™M-C [0 CNNC 3 MLP-C [ GRNBoost2

T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

Evalutation: 10-fold edge cross-validation
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Evalutation: 10-fold TF-holdout cross-validation
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Evalutation: 10-fold TF-holdout cross-validation
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Evaluation: mESC ChlIP-seq network
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Introduction

Supervised Inference

Case Study: hESC scRNA-seq dataset 3

@ Human embryonic stem cell dataset (hESC)

Dataset | #Cells | #Nodes | #Edges | # TFs
hESC 758 1,142 4,597 292

e Ground-truth network: Non-cell-type specific ChIP-seq network® 2
@ Training set-up:

» GCN-RS-E

» Positives: Edges in the human non-specific ChlP-seq network

> Negatives: All possible TF-gene edges that not in the human
non-specific ChlP-seq network

YLiu et al. (2015) “RegNetwork: an integrated ...” Database, 2015
2Han et al. (2108) “TRRUSTV2 ...” Nucleic Acids Res., 46(D1):D380-D386
3hesc-single-cell-genbio-december-2016
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Predicted network: Edge weight distribution

Edge weight (all edges)
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Predicted network: Edge weight distribution
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Predicted network: Edge weight distribution

Edge weight (all edges)
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Supervised Inference

Unknown Edges: hESC cell-type specific network

Edge weight (unknown edges)
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Supervised Inference

Unknown Edges: hESC cell-type specific network

Edge weight (unknown edges)

1.0

o
o

Edge Weight
o
=

e
N

0.0

Yes No
hESC ChIP-seq

T. M. Murali February 16, 18, 2021 Supervised GRNs



Summary

@ GCN-based autoencoders are useful for denoising and reducing
dimensions

@ We use GCN-based autoencoders to train model for supervised GRN
inference
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Summary

@ GCN-based autoencoders are useful for denoising and reducing
dimensions

@ We use GCN-based autoencoders to train model for supervised GRN
inference

@ GCN-autoencoder outperforms other methods for supervised GRN
inference

@ Can identify cell-type specific regulatory interactions even when
trained on non-cell type specific GRN

T. M. Murali February 16, 18, 2021 Supervised GRNs



Supervised Inference

Future Research
o Integrative single-cell analysis

Cell surface proteins

« CITE-seq™®
ol al
Intracellular acs Spatial position
protein « MERFISH 07108109
* PEA® « smFISH
* STARmap?!

DNA e
methylation

* scBS-seq'’
¢ snmC-seq'®

* sci-MET* mRNA :
Genome Histone * Drop—qu
sequence modifications * InDrop -

* SNS*® e scChlP-seq?  ° Sman—squ
*SCl-seq'® accessibility * MARS-seq’
* scATAC-seq** * 10X Genomics®
* sciATAC-seq'* * SPLiT-seq®
¢ scTHS-seq* * sci-RNA-seq’

* 10X Genomics

Stuart et al..(2019) “Integrative single-cell...” Nat Rev Genet 20, 257-272.
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