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Signaling Pathways and Gene Expression
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Gene Expression is a Dynamic Process
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Measuring Genomewide Gene Expression: DNA Microarrays
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Applications of DNA Microarray Data
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Measuring Genomewide Gene Expression: RNA-seq
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Measuring Genomewide Gene Expression: RNA-seq
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Griffith et al., Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLoS Comput Biol, 2015
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*-Seq Techniques
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Soon, Hariharan, and Snyder. High-throughput sequencing for biology and medicine. Mol. Sys. Bio, 2013.
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Single-Cell RNA-Seq
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Owens, Genomics: The single life, Nature, 2012.
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Technology Trends

Results per 100,000 citations in PubMed
proportion for each search by year, 1995 to 2021
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Applications of scRNA-seq Data
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Hwang, Lee, and Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med., 2018
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Cellular Differentiation

Shier et al.. (2015) “Hole’s Essentials of Human Anatomy and Physiology”, McGraw-Hill
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Cellular Differentiation

T. M. Murali February 16, 18, 2021 Supervised GRNs

Anatomy and Physiology, Rice University.
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Cellular Differentiation

Cells in different states express different sets of genes.

Cells move from one “state” to another.

T. M. Murali February 16, 18, 2021 Supervised GRNs

Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Cellular Differentiation

Transcription factors activate/inhibit genes to effect cell transition from one
state to another.
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Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Gene Regulatory Network (GRN)
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Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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Gene Regulatory Network (GRN)

How do we build GRNs using computational techniques?

T. M. Murali February 16, 18, 2021 Supervised GRNs

Krumsiek et al. (2010). “Hierarchical Differentiation of Myeloid Progenitors...” PLoS ONE
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BEELINE Results for Human Datasets
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Poor AUPRC performance
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Supervised GRN inference

Can supervised learning methods take advantage of known regulatory
interactions for GRN inference from scRNA-seq data?

+

scRNA-seq
expression

Known
interactions

Predicted GRN
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Existing approaches for supervised GRN

Generate TF-gene features and build a classifier (e.g., SVM)
I Concatenate expression vectors1

I Outer product2

I Kernels3

1 Cerulo et al. (2010) “Learning gene regulatory ...” BMC Bioinfo., 11(1):228
2Maetschke et al. (2014) “Supervised, semi- ...” Brief. Bioinfo., 15(2):195–211
3Cuong et al. (2008) “Supervised inference ...” BMC Bioinfo., 9(1):2

T. M. Murali February 16, 18, 2021 Supervised GRNs
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Drawbacks

Drawbacks of fixed TF-gene feature representation:
1 Dropouts + noise in the input expression data

I Dropout: where a gene is observed in one cell but is not detected in
another cell of the same cell type

I Unclear how fixed feature representation can overcome these problems

2 Do not scale well for datasets with large number of cells

T. M. Murali February 16, 18, 2021 Supervised GRNs
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Proposed solutions

1 Dropouts + noise in the input expression data → Denoise and impute
data using network propagation1 2 3

2 Do not scale well for datasets with large number of cells →
Dimensionality reduction

1Ronen et al. (2018) “netSmooth ...” F1000 Res. 7.
2Ye et al. (2019) “scNPF ” BMC Genomics 20, 347.
3Elyanow et al. (2020) ”netNMF-sc ...” Gen Res 30.2: 195-204.
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Denoising the input data
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Denoising the input data
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Denoising the input data
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Reducing dimensions of the input data

T. M. Murali February 16, 18, 2021 Supervised GRNs
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Graph convolutional networks (GCNs)

T. M. Murali February 16, 18, 2021 Supervised GRNs

Kipf et al. (2016) “Semi-supervised classification with graph ...”, CoRR, 1609.02907.
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GCN-based Autoencoders

T. M. Murali February 16, 18, 2021 Supervised GRNs

Kipf et al. (2016) “Semi-supervised classification with graph ...”, CoRR, 1609.02907.
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GCN-based Autoencoders

T. M. Murali February 16, 18, 2021 Supervised GRNs

Kipf et al. (2016) “Semi-supervised classification with graph ...”, CoRR, 1609.02907.
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GCN-based Autoencoders

Learning objective: minimize the cross-entropy loss between A and Ā

L =
1

|E |

(
−
∑

(i,j)∈E

log āij −
∑

(p,q)∈Ē

log(1− āpq)

)
T. M. Murali February 16, 18, 2021 Supervised GRNs

Kipf et al. (2016) “Semi-supervised classification with graph ...”, CoRR, 1609.02907.
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Directed GCN + Node Weight Decoder (NW)

ni : Learned node weight for node i

T. M. Murali February 16, 18, 2021 Supervised GRNs
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Directed GCN + RESCAL Decoder (RS)1

M: Learned weight matrix

1Nickel et al. (2012) “Factorizing YAGO... ”, In Proc. WWW, pp. 271–280
T. M. Murali February 16, 18, 2021 Supervised GRNs
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Variants of GCN-based Autoencoders

Six encoder-decoder combinations:

Encoders
I Undirected GCN-based encoder (GCN)
I Directed GCN-based encoder (DGCN)

Decoders
I Inner Product decoder (IP)
I Node Weight decoder (NW)
I RESCAL Decoder (RS)

T. M. Murali February 16, 18, 2021 Supervised GRNs
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Evaluation

k-fold cross validation: Edges, TFs

Positive edges: TF-gene edges present in the input GRN G = (V ,E )

Negative edges: TF-gene edges not in G

TF
Gene

Positive
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10-Fold Edge Holdout Cross-Validation

Randomly partition positive edges into 10 sets

Holdout one set of edges as testing positives

Use the remaining edges as training positives

Sample uniformly at random as many training (testing) negatives as
there are training (testing) positives

T. M. Murali February 16, 18, 2021 Supervised GRNs
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10-Fold TF Holdout Cross-Validation

Randomly partition TF nodes in the GRN into 10 sets

Holdout one set of TFs and all the edges adjacent to them in the
GRN as testing positives

Use the remaining edges in the GRN as training positives

How do we sample negatives?

For each TF, we randomly sample as
many negatives as there are positives adjacent to that TF, once for
the set training and once for the testing set.
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10-Fold TF Holdout Cross-Validation

Randomly partition TF nodes in the GRN into 10 sets

Holdout one set of TFs and all the edges adjacent to them in the
GRN as testing positives

Use the remaining edges in the GRN as training positives

How do we sample negatives? For each TF, we randomly sample as
many negatives as there are positives adjacent to that TF, once for
the set training and once for the testing set.
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Ground-Truth Networks

Cell-type specific ChIP-seq network

Non-specific ChIP-seq network

T. M. Murali February 16, 18, 2021 Supervised GRNs
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ChIP-seq

Chromatin: any protein interacting with DNA, e.g., TF
ImmunoPrecipitation: enrichment of DNA bound to 
the protein of interest

Sample fragmentation

TF

DNA purification + PCR

Next gen. sequencing

Map reads to reference genome 

TF binding regions

peak calling

T. M. Murali February 16, 18, 2021 Supervised GRNs
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ChIP-seq

TF1 binding regions

Gene1 Gene2

TF1
Gene1

Gene2

TF2 binding region

Gene1 Gene2Gene3

TF2 Gene3
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Cell-type specific ChIP-seq network

TF1 binding regions

Gene1 Gene2

TF1
Gene1

Gene2

TF2 binding region

Gene1 Gene2Gene3

TF2 Gene3

Very few TFs tested for each cell-type
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Non-specific ChIP-seq network

Collected curated TF-gene
interactions from

1 RegNetwork1

2 TRRUST2

3 DoRothEA3
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1. Liu et al. (2015) “RegNetwork: an integrated ...” Database, 2015
2. Han et al. (2018) “TRRUSTv2 ...” NAR, 46(D1):D380–D386
3. Garcia-Alonso et al. (2019) “Benchmark ...” Gen. Res., 29:1363–1375
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Gene Expression Datasets

Name #Cells #Nodes #Edges # TFs
mESC1 471 896 6,893 516

mHSC2 3,175 4,158 17,309 445

mMac3 6,283 7,428 35,347 747

hESC4 758 1,142 4,597 292

1Hayashi et al. (2018) “Single-cell full-length...”Nat Comm, 9, 619
2Nestorowa et al. (2016) “A Single-Cell Resolution...”Blood, 128(8):e20-31
3Alavi et al. (2018) “A web server for...”Nat Comm, 9, 4768
4Chu et al. ”Single-cell RNA-seq reveals . . .Genome Biology, 17(1), 173
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Best GCN-based autoencoder architecture

Median test early precision from 10-fold evaluations

GCN-RS performs the best for 10-fold edge cross-validation

GCN-IP performs the best for 10-fold TF cross-validation
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Methods evaluated

For 10-fold edge CV: GCN-RS autoencoder

For 10-fold TF CV: GCN-IP autoencoder

CNNC1: CNN-based method that uses normalized empirical
probability function (NEPDF) as features for every pair of genes

MLP-C: a multi-layer perceptron with as many hidden layers as in
the GCN and with concatenated expression vectors as input features

SVM-C: Linear SVM with concatenated expression vectors as input
features

GRNBoost2: One of the top performing unsupervised learning
methods from BEELINE (baseline)

1Yuan (2020) “Deep learning for inferring . . . ” PNAS, 116 (52) 27151-27158
T. M. Murali February 16, 18, 2021 Supervised GRNs
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Evalutation: 10-fold edge cross-validation
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Evalutation: 10-fold TF-holdout cross-validation
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Evalutation: 10-fold TF-holdout cross-validation
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Evaluation: mESC ChIP-seq network
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Case Study: hESC scRNA-seq dataset 3

Human embryonic stem cell dataset (hESC)

Dataset #Cells #Nodes #Edges # TFs
hESC 758 1,142 4,597 292

Ground-truth network: Non-cell-type specific ChIP-seq network1 2

Training set-up:
I GCN-RS-E
I Positives: Edges in the human non-specific ChIP-seq network
I Negatives: All possible TF-gene edges that not in the human

non-specific ChIP-seq network

1Liu et al. (2015) “RegNetwork: an integrated ...” Database, 2015
2Han et al. (2108) “TRRUSTv2 ...” Nucleic Acids Res., 46(D1):D380–D386
3hesc-single-cell-genbio-december-2016
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Predicted network: Edge weight distribution
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Predicted network: Edge weight distribution
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Unknown Edges: hESC cell-type specific network
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Unknown Edges: hESC cell-type specific network
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Summary

GCN-based autoencoders are useful for denoising and reducing
dimensions

We use GCN-based autoencoders to train model for supervised GRN
inference

GCN-autoencoder outperforms other methods for supervised GRN
inference

Can identify cell-type specific regulatory interactions even when
trained on non-cell type specific GRN
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Future Research
Integrative single-cell analysis

Stuart et al..(2019) “Integrative single-cell...” Nat Rev Genet 20, 257–272.
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