Comparative Systems
Biology(CSB)



What is CSB?

» Investigate the similarity &
difference

* among genes, proteins, genomes,
proteomes, metabolomes, organisms,
etc.

@ systems level.



Why we can compare species
@ systems level?

» Two main ‘laws’-assumptions
v'Evolution theory

v'One gene to one protein and then one
function ( the central Dogma)



Evolution Theory

v'Darwin’s natural selection (by
stochastic mutation)

v’ Kimura's Neutral theory of molecular
evolution ( molecular clock)

+ All the species from the same origin

- So, we can find somewhat similar
groups among the genes, proteins,
genomes, proteomes, etfc



The Central Dogma
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The Central Dogma

* Information Flow
one gene-one protein-one function
» Control Flow ( Temporal and Spatial)

» Everything related to genes follows
the same pattern above, so, it's
comparable



An example of biolog
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It exist in mammalian cells, it should
have a similar one existed in other
cells in different organisms



Versatile Biological Databases

» Each layer and each process is classified
into different databases.

- The data in most of database is not
complete or only partially known

» All the databases not in fully connected by
proper time and space

* S0, we can dig out sth among them.



Gene Ontology

* 'The Gene Ontology (GO) project is a
collaborative effort to address the need
for consistent descriptions of gene
products in different databases.’

+ It divides all the genes terms (annotations)
into three parts: biological processes,
cellular components and molecular
functions and subdivide into tree-structure



Gene Ontology(cont’)

» Each gene product( and its term) has
a unique identifier

» The GO database cross-link to many
different databases, which provides
a uniform querying system



Correlated expression patterns —
Similar Functions

* (Genes that encode proteins that participate in the same
pathway or are part of the same protein complex are often
coregulated.

o Clusters of genes with related functions often exhibit
expression patterns that are correlated under a large
number of diverse conditions in DNA microarray
experiments.



Evolutionary conservation

« Evolutionary conservation is a powerful criterion to
Identify genes that are functionally important from a set of
coregulated genes.

« Coregulation of a pair of genes over large evolutionary
distances implies that the coregulation confers a selective
advantage, most likely because the genes are functionally
related.



Metagene

o Metagene as a set of genes across multiple organisms
whose protein sequences are one another's best reciprocal

BLAST hit

* For example, metagene MEG273 refers to the human gene
Psmd4, the C. elegans gene rpn-10, the D. melanogaster
gene Pros54, and the S. cerevisiae gene Rpnl0, all of
which encode a non-adenosine triphosphatase subunit of

the 19S proteasome cap
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Building the gene-coexpression
network

 Pairs of genes whose expression Is significantly
correlated in multiple organisms.

 Calculate Pearson correlation of the expression
profiles between every pair of genes in the
microarray data sets for each organism.

* Rank genes according to their Pearson
correlations.



Building the gene-coexpression
network..

Probability method based on order statistics

Probability of observing a particular
configuration of ranks across the different
organisms by chance.

P<0.05 1s the cutoff to indicate that two
metagenes are co-expressed.

Combined each such link to form a
Interaction network.



Results & Verification

e 3416 Metagenes connected by 22,163
Interactions.

e Lot more Interactions were observed than
the ‘chance’ interactions(236) estimated by
the statistical model.



Verification..

Random pairs of metagenes could have
significant co-expression interactions too..

Metagenes( containing random collection of
genes from each organism)

Built a network and studied the number of
siginificant interactions

Real networks have 3.5 times more
Interactions than random networks
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Robustness
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Figure S1. Rubustness to noise analysis. We added increasing levels of Gaussian noise
to each organisms’ dataset with 0.01g (blue circles), 0.1c (pink squares). 0.5¢ (yzllow
triangles), and 1.0 (light blue crosses). Shown is the negative log P-value of an
interaction in the original network (x-axis) plotted azainst the interaction’s P-value in the
network constructed from the noise-added data (y-axis).



Visualization

Network Layout Complete layout
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Components

e K-means clustering on the x-y co-ordinates
12 regions of highly interconnected
metagenes (Components)

* Found that each component was enriched
with genes involved in similar biological

Processes



Analysis

« Component 5 — found be strongly enriched
with cell cycle metagenes.

e Of 241 metagenes in it, 110 were known to
be in cell cycle. The rest 131 could be
hypothesized to belong to cell cycle.



Validation

* Meg1503(splicing), Meg342(nucleoporin
Interacting component),Meg 4513,
Meg1192, Meg1146(unknown functions)
showed a significant number of links to the

cell proliferation metagenes.
» Are these related to cell proliferation ??
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Quality Evaluation(Multi vs
single)

e Accuracy - Percentage of links connecting two
members of the category

« Coverage — Percentage of metagenes connected
atleast one other metagene in the category

ceuracy (%)
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Using Sequence similarity

homologues j

EGene of Interest




Using Sequence
Homology(cont..)

e LIMITATIONS

— One genomic sequence may have several close
homologues , some of which may be related to
different functions.

— A seguence may have diverged beyond
recognition although the gene may have
maintained its function



Using Gene Expression Data

e Can be used to provide function links for genes
based on the co-expression with known genes

e Limitations

— Can only provide a functional link between genes of the
same organism.Difficult for cross-specie comparison

— Due to the noise in the expression data the inferred co-
expression could be accidental and may not necessarily
reflect some similar biological function




Combining Gene Expression Data
and Seguence Data

« The limitations of using either(only sequence or only
expression) alone may be reduced

« Homologue genes whose function has been
preserved are expected to be co-regulated with
genes that have similar function

e This distinguishes from similar homologues whose
function has diverged




Combining Gene Expression Data
and Seguence Data

BLAST




Standard Cluster Algorithms

e Limitations

— They assign each gene to a single cluster ,whereas in fact
genes may participate in several functions and could be in
several clusters

— These algorithms classify genes on the basis of there
expression under all experimental conditions, whereas
cellular processes are generally affected by a subset of
conditions.Most conditions that do not contribute information
contribute to the background noise




Signature Algorithms

 Takes a set of related or random genes
» Uses expression data and generates an Output

INPUT
Set Of Genes( Related OR Unrelated)

Expression Data. !

Add Co-
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The Algorithm

» Identifies the co-regulated genes and also the experimental
conditions under which they are co-expressed

« Algorithm proceeds in two stages:

— ldentifies the experimental conditions under which the genes
are co regulated most tightly

— Selects those genes that show a significant and consistent
expression under the conditions selected in the first stage

INPUT

OUTPUT

The weighted avg.

Average change calculated for change in expression
each condition in the expression for each gene calculated
of the input and called Score referred to as
“Condition score” . Only scores “gene score”.

that are large enough High gene score selected

are selected



Signature Algorithm Output

Co-regulated genes ~ CO-regulating
conditions




lterative Signature Algorithm

OUPUT re-used as INPUT, such that further iterations can bring
In more co-regulated genes

Procedure repeated OUTPUT equals INPUT
Final OUTPUT is called “transcription module”.

Contains set of co-regulated genes and the conditions that
induce their co-regulation.

By definition, all genes outside the module are less co-regulated
than the module genes under these conditions

INPUT=OUTPUT




Using Transcription Modules

(Combining Expression and sequence info.)




Homologue Modules

Using the Signature Algorithm we create a Transcription Module
starting out with genes of an organism that are associated with a
function ...

— Eg: yeast genes associated with cellular function and end up with a
™.

Using this TM, find homologues in other organism

In the paper at hand five organisms
(E.coli,A.thaliana,C.elegans,D.melanogaster,H.sapiens,S.cerevi
siae) are used and five different homologue modules were
created on sequence similarity

The Assumption is that the co expression of functionally linked
genes is often conserved

The results indicate an average correlation between the genes
of the homologue module to be significant




Unrefined Module

The homologue modules that result here has limitations

The average correlation is significant, but the pair wise
correlation reveals that only some are correlated with each other

Inference :

— Some of the homologues in the homologue module that are
not co-expressed may have varied functionally over time

— The module misses genes whose sequence has changed
over time but the function has remained the same




Gene Refinement”
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Signature Algorithm (Ctd)..

« Signature algorithm used to reject genes not co-regulated
according to the available expression data

 Co-regulated genes not included by homology added
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Within Species

o Still has problems
— Different chips
— Different experimental procedures

* Fixes some problems

— No need for “homologues”

— Can (sometimes) directly compare expression
profiles



Within Species

e Possible uses
— Cancer vs Non-Cancer

— Cancer vs Cancer by
e Type (Lung vs Brain)
* Degree of progression (metastatic vs not)
e Grade (high vs low)

e Functional annotation



Analysis vs Meta-Analysis

o Analysis
— Direct comparison of expression profiles
 “2-fold increase in cancer”
e Meta-Analysis

— Comparison of properties of the expression
profiles

e “Well above standard deviation in cancer”



Meta-Signatures

* Group of genes whose differential
expression Is “most significant”

— Neoplastic transformation
— Undifferentiated cancer

e Thisis NOT the aforementioned *“signature
algorithm”



Finding Meta-Signatures

Choose analogous differential expression
data sets

Select direction and significance threshold

Sort genes by number of signatures in
which they appear

Find intersection
Calculate the significance of the intersection



Validation

e |Leave-one-out voting



Results

* Neoplastic transformation
— 36 signatures
— 183 present in 10/36

— Contains: cell cycle, transcriptional regulation,
protein folding, and the proteasome

e Undifferentiated cancer

— 7 signatures
— 69 genes in 4/7



Functional Annotation/
Coexpression Links

e Basic idea: If a pair/set/group of genes are
coexpressed in more than one data set, then

they are more likely to be coexpressed In
VIVO
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Coexpression Links

* 9.7 million coexpression links in 60 data
sets

e 220,649 are 3+ confirmed



Functional Annotation

e GO term overlap

Cumulative probability
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